-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathdeepsort.py
executable file
·247 lines (206 loc) · 9.34 KB
/
deepsort.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import os
import cv2
import time
import argparse
import torch
import warnings
import numpy as np
import sys
sys.path.append(os.path.join(os.path.dirname(__file__), 'thirdparty/fast-reid'))
sys.path.append(os.path.join(os.path.dirname(__file__), 'thirdparty/mmdetection'))
from detector import build_detector
from deep_sort import build_tracker
from utils.draw import draw_boxes
from utils.parser import get_config
from utils.log import get_logger
from utils.io import write_results
import pickle
class VideoTracker(object):
def __init__(self, cfg, args, video_path):
self.cfg = cfg
self.args = args
self.video_path = video_path
## self.track_class
# yolov3, person_id = 0; car_id = 2, 选择人cls_ids=0,作为跟踪; car, cls_ids=2, 具体见 coco.name;
# -1 所有目标都进行跟踪
self.track_class = cfg.DEEPSORT.TRACK_CLASS
self.logger = get_logger("root")
self.reid_feature_dic = {}
self.now_frame = 0
self.cam_id = video_path.split(os.sep)[-2] # video_path = /workspace/dataset/aic22-mcmt/S06/c112/vdo.avi
use_cuda = args.use_cuda and torch.cuda.is_available()
if not use_cuda:
warnings.warn("Running in cpu mode which maybe very slow!", UserWarning)
if args.display:
cv2.namedWindow("test", cv2.WINDOW_NORMAL)
cv2.resizeWindow("test", args.display_width, args.display_height)
if args.cam != -1:
print("Using webcam " + str(args.cam))
self.vdo = cv2.VideoCapture(args.cam)
else:
self.vdo = cv2.VideoCapture()
self.detector = build_detector(cfg, use_cuda=use_cuda)
self.deepsort = build_tracker(cfg, use_cuda=use_cuda)
self.class_names = self.detector.class_names
def reid_feature_ele_init(self, reid_dic={}):
# frame_id = 1, track_id=5):
"""
key_names = "img" + str(frame_id).zfill(6) + "_" + str(track_id).zfill(3)
unit = {
'img000011_020':{
'bbox': (1056, 448, 1262, 590),
'frame': 'img000011',
'id': 20,
'imgname': 'img000011_020.png',
'class': 2,
'conf': 0.8876953125,
'feat': array([ 0.55748284, ...e=float32) }
}
"""
frame = "img" + str(reid_dic["frame_id"]).zfill(6)
key_names = frame + "_" + str(reid_dic["track_id"]).zfill(3)
unit = {
'bbox': reid_dic["bbox"],
'frame': frame,
'id': reid_dic["track_id"],
'imgname': key_names + '.png',
'class': reid_dic["class"],
'conf': reid_dic["conf"],
'feat': reid_dic["feat"] }
return key_names, unit
def update_reid_feature_dic(self, frame=0, detections=None):
out_dict = {}
for idx, item in enumerate(detections):
idx_frame = "img" + str(frame).zfill(6)
key_names = idx_frame + "_" + str(idx).zfill(3)
out_dict[key_names] = {
'bbox': item.x1y1x2y2,
'frame':idx_frame,
'id': str(idx),
'imgname': key_names +".png",
'class': self.track_class,
'conf': item.confidence,
'feat': item.feature
}
return out_dict
def save_dic_to_pkl(self, dic={}, output_path="./", cam="c112"):
feat_pkl_file = os.path.join(self.args.save_path, f'{cam}_dets_feat.pkl')
pickle.dump(dic, open(feat_pkl_file, 'wb'), pickle.HIGHEST_PROTOCOL)
print('save pickle in %s' % feat_pkl_file)
def __enter__(self):
if self.args.cam != -1:
ret, frame = self.vdo.read()
assert ret, "Error: Camera error"
self.im_width = frame.shape[0]
self.im_height = frame.shape[1]
else:
assert os.path.isfile(self.video_path), "Path error"
self.vdo.open(self.video_path)
self.im_width = int(self.vdo.get(cv2.CAP_PROP_FRAME_WIDTH))
self.im_height = int(self.vdo.get(cv2.CAP_PROP_FRAME_HEIGHT))
assert self.vdo.isOpened()
if self.args.save_path:
os.makedirs(self.args.save_path, exist_ok=True)
# path of saved video and results
self.save_video_path = os.path.join(self.args.save_path, "results.avi")
self.save_results_path = os.path.join(self.args.save_path, "results.txt")
# create video writer
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
self.writer = cv2.VideoWriter(self.save_video_path, fourcc, 15, (self.im_width, self.im_height)) # defualt, fps=20
# logging
self.logger.info("Save results to {}".format(self.args.save_path))
return self
def __exit__(self, exc_type, exc_value, exc_traceback):
if exc_type:
print(exc_type, exc_value, exc_traceback)
def run(self):
results = []
idx_frame = 0
while self.vdo.grab():
self.now_frame = idx_frame
idx_frame += 1
if idx_frame % self.args.frame_interval:
continue
start = time.time()
_, ori_im = self.vdo.retrieve()
im = cv2.cvtColor(ori_im, cv2.COLOR_BGR2RGB)
# do detection
bbox_xywh, cls_conf, cls_ids = self.detector(im)
# 画框到一张图片上,并保存
# imga = draw_boxes(im, bbox_xywh, cls_ids, cls_conf , class_name_map=self.detector.class_names)
# cv2.imwrite("./1.png", imga[:, :, (2, 1, 0)])
if self.track_class == -1:
# track all id
mask = cls_ids == cls_ids
else:
# t rack specify id
mask = cls_ids == self.track_class
bbox_xywh = bbox_xywh[mask]
# bbox dilation just in case bbox too small, delete this line if using a better pedestrian detector
bbox_xywh[:, 3:] *= 1.2 #
cls_conf = cls_conf[mask]
# do tracking
outputs, detections = self.deepsort.update(bbox_xywh, cls_conf, im)
# draw boxes for visualization
if len(outputs) > 0:
bbox_tlwh = []
bbox_xyxy = outputs[:, :4]
identities = outputs[:, -1]
ori_im = draw_boxes(ori_im, bbox_xyxy, identities) # 画框到原始图片上
for bb_xyxy in bbox_xyxy:
bbox_tlwh.append(self.deepsort._xyxy_to_tlwh(bb_xyxy))
results.append((idx_frame - 1, bbox_tlwh, identities))
end = time.time()
if self.args.display:
cv2.imshow("test", ori_im)
cv2.waitKey(1)
if self.args.save_path:
self.writer.write(ori_im)
# save results
write_results(self.save_results_path, results, 'mot')
# logging
self.logger.info("time: {:.03f}s, fps: {:.03f}, detection numbers: {}, tracking numbers: {}" \
.format(end - start, 1 / (end - start), bbox_xywh.shape[0], len(outputs)))
# reid feature
if len(detections) >0:
out_dic = self.update_reid_feature_dic(frame=self.now_frame, detections= detections)
self.reid_feature_dic.update(out_dic)
self.save_dic_to_pkl(dic=self.reid_feature_dic, output_path=self.args.save_path, cam=self.cam_id)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("VIDEO_PATH", type=str)
parser.add_argument("--config_mmdetection", type=str, default="./configs/mmdet.yaml")
parser.add_argument("--config_detection", type=str, default="./configs/yolov3.yaml")
parser.add_argument("--config_deepsort", type=str, default="./configs/deep_sort.yaml")
parser.add_argument("--config_fastreid", type=str, default="./configs/fastreid.yaml")
parser.add_argument("--detect_model", type=str, default="yolov3")
parser.add_argument("--fastreid", action="store_true")
parser.add_argument("--mmdet", action="store_true")
# parser.add_argument("--ignore_display", dest="display", action="store_false", default=True)
parser.add_argument("--display", action="store_true")
parser.add_argument("--frame_interval", type=int, default=1)
parser.add_argument("--display_width", type=int, default=800)
parser.add_argument("--display_height", type=int, default=600)
parser.add_argument("--save_path", type=str, default="./output/")
parser.add_argument("--cpu", dest="use_cuda", action="store_false", default=True)
parser.add_argument("--camera", action="store", dest="cam", type=int, default="-1")
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
cfg = get_config()
print(args)
if args.mmdet:
cfg.merge_from_file(args.config_mmdetection)
cfg.USE_MMDET = True
else:
cfg.merge_from_file(args.config_detection)
cfg.USE_MMDET = False
cfg.DETECT_MODEL = args.detect_model
cfg.merge_from_file(args.config_deepsort)
if args.fastreid:
cfg.merge_from_file(args.config_fastreid)
cfg.USE_FASTREID = True
else:
cfg.USE_FASTREID = False
with VideoTracker(cfg, args, video_path=args.VIDEO_PATH) as vdo_trk:
vdo_trk.run()