forked from gzr2017/ImageProcessing100Wen
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanswer_40.cpp
275 lines (219 loc) · 6.87 KB
/
answer_40.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <iostream>
#include <math.h>
#include <complex>
const int height = 128, width = 128, channel = 3;
// DCT hyper-parameter
int T = 8;
int K = 8;
// DCT coefficient
struct dct_str {
double coef[height][width][channel];
};
// Discrete Cosine transformation
dct_str dct(cv::Mat img, dct_str dct_s){
double I;
double F;
double Cu, Cv;
for (int ys = 0; ys < height; ys += T){
for (int xs = 0; xs < width; xs += T){
for (int c = 0; c < channel; c++){
for (int v = 0; v < T; v ++){
for (int u = 0; u < T; u ++){
F = 0;
if (u == 0){
Cu = 1. / sqrt(2);
} else{
Cu = 1;
}
if (v == 0){
Cv = 1. / sqrt(2);
}else {
Cv = 1;
}
for (int y = 0; y < T; y++){
for(int x = 0; x < T; x++){
I = (double)img.at<cv::Vec3b>(ys + y, xs + x)[c];
F += 2. / T * Cu * Cv * I * cos((2. * x + 1) * u * M_PI / 2. / T) * cos((2. * y + 1) * v * M_PI / 2. / T);
}
}
dct_s.coef[ys + v][xs + u][c] = F;
}
}
}
}
}
return dct_s;
}
// Inverse Discrete Cosine transformation
cv::Mat idct(cv::Mat out, dct_str dct_s){
double f;
double Cu, Cv;
for (int ys = 0; ys < height; ys += T){
for (int xs = 0; xs < width; xs += T){
for (int c = 0; c < channel; c++){
for (int y = 0; y < T; y++){
for (int x = 0; x < T; x++){
f = 0;
for (int v = 0; v < K; v++){
for (int u = 0; u < K; u++){
if (u == 0){
Cu = 1. / sqrt(2);
} else {
Cu = 1;
}
if (v == 0){
Cv = 1. / sqrt(2);
} else {
Cv = 1;
}
f += 2. / T * Cu * Cv * dct_s.coef[ys + v][xs + u][c] * cos((2. * x + 1) * u * M_PI / 2. / T) * cos((2. * y + 1) * v * M_PI / 2. / T);
}
}
f = fmin(fmax(f, 0), 255);
out.at<cv::Vec3b>(ys + y, xs + x)[c] = (uchar)f;
}
}
}
}
}
return out;
}
// Quantization
dct_str quantization(dct_str dct_s){
// Q table for Y
double Q1[T][T] = {{16, 11, 10, 16, 24, 40, 51, 61},
{12, 12, 14, 19, 26, 58, 60, 55},
{12, 12, 14, 19, 26, 58, 60, 55},
{14, 17, 22, 29, 51, 87, 80, 62},
{18, 22, 37, 56, 68, 109, 103, 77},
{24, 35, 55, 64, 81, 104, 113, 92},
{49, 64, 78, 87, 103, 121, 120, 101},
{72, 92, 95, 98, 112, 100, 103, 99}
};
// Q table for Cb Cr
double Q2[T][T] = {{17, 18, 24, 47, 99, 99, 99, 99},
{18, 21, 26, 66, 99, 99, 99, 99},
{24, 26, 56, 99, 99, 99, 99, 99},
{47, 66, 99, 99, 99, 99, 99, 99},
{99, 99, 99, 99, 99, 99, 99, 99},
{99, 99, 99, 99, 99, 99, 99, 99},
{99, 99, 99, 99, 99, 99, 99, 99},
{99, 99, 99, 99, 99, 99, 99, 99}
};
for (int ys = 0; ys < height; ys += T){
for (int xs = 0; xs < width; xs += T){
for(int y = 0; y < T; y++){
for(int x = 0; x < T; x++){
dct_s.coef[ys + y][xs + x][0] = round(dct_s.coef[ys + y][xs + x][0] / Q1[y][x]) * Q1[y][x];
dct_s.coef[ys + y][xs + x][1] = round(dct_s.coef[ys + y][xs + x][1] / Q2[y][x]) * Q2[y][x];
dct_s.coef[ys + y][xs + x][2] = round(dct_s.coef[ys + y][xs + x][2] / Q2[y][x]) * Q2[y][x];
}
}
}
}
return dct_s;
}
// BGR -> Y Cb Cr
cv::Mat BGR2YCbCr(cv::Mat img, cv::Mat out){
int width = img.rows;
int height = img.cols;
//cv::Mat out = cv::Mat::zeros(height, width, CV_32F);
for (int j = 0; j < height; j ++){
for (int i = 0; i < width; i ++){
// Y
out.at<cv::Vec3b>(j, i)[0] = (int)((float)img.at<cv::Vec3b>(j,i)[0] * 0.114 + \
(float)img.at<cv::Vec3b>(j,i)[1] * 0.5870 + \
(float)img.at<cv::Vec3b>(j,i)[2] * 0.299);
// Cb
out.at<cv::Vec3b>(j, i)[1] = (int)((float)img.at<cv::Vec3b>(j,i)[0] * 0.5 + \
(float)img.at<cv::Vec3b>(j,i)[1] * (-0.3323) + \
(float)img.at<cv::Vec3b>(j,i)[2] * (-0.1687) + 128);
// Cr
out.at<cv::Vec3b>(j, i)[2] = (int)((float)img.at<cv::Vec3b>(j,i)[0] * (-0.0813) + \
(float)img.at<cv::Vec3b>(j,i)[1] * (-0.4187) + \
(float)img.at<cv::Vec3b>(j,i)[2] * 0.5 + 128);
}
}
return out;
}
// Y Cb Cr -> BGR
cv::Mat YCbCr2BGR(cv::Mat ycbcr, cv::Mat out){
int width = out.rows;
int height = out.cols;
int val;
for (int j = 0; j < height; j ++){
for (int i = 0; i < width; i ++){
// R
val = ycbcr.at<cv::Vec3b>(j, i)[0] + (ycbcr.at<cv::Vec3b>(j, i)[2] - 128) * 1.4102;
val = fmin(255, fmax(0, val));
out.at<cv::Vec3b>(j, i)[2] = (uchar)val;
// G
val = ycbcr.at<cv::Vec3b>(j, i)[0] - (ycbcr.at<cv::Vec3b>(j, i)[1] - 128) * 0.3441 - (ycbcr.at<cv::Vec3b>(j, i)[2] - 128) * 0.7139;
val = fmin(255, fmax(0, val));
out.at<cv::Vec3b>(j, i)[1] = (uchar)val;
// B
val = ycbcr.at<cv::Vec3b>(j, i)[0] + (ycbcr.at<cv::Vec3b>(j, i)[1] - 128) * 1.7718;
val = fmin(255, fmax(0, val));
out.at<cv::Vec3b>(j, i)[0] = (uchar)val;
}
}
return out;
}
// Compute MSE
double MSE(cv::Mat img1, cv::Mat img2){
double mse = 0;
for(int y = 0; y < height; y++){
for(int x = 0; x < width; x++){
for(int c = 0; c < channel; c++){
mse += pow(((double)img1.at<cv::Vec3b>(y, x)[c] - (double)img2.at<cv::Vec3b>(y, x)[c]), 2);
}
}
}
mse /= (height * width);
return mse;
}
// Compute PSNR
double PSNR(double mse, double v_max){
return 10 * log10(v_max * v_max / mse);
}
// Compute bitrate
double BITRATE(){
return T * K * K / T * T;
}
// Main
int main(int argc, const char* argv[]){
double mse;
double psnr;
double bitrate;
// read original image
cv::Mat img = cv::imread("imori.jpg", cv::IMREAD_COLOR);
// DCT coefficient
dct_str dct_s;
// output image
cv::Mat ycbcr = cv::Mat::zeros(height, width, CV_32FC3);
cv::Mat out = cv::Mat::zeros(height, width, CV_8UC3);
// BGR -> Y Cb Cr
ycbcr = BGR2YCbCr(img, ycbcr);
// DCT
dct_s = dct(ycbcr, dct_s);
// Quantization
dct_s = quantization(dct_s);
// IDCT
ycbcr = idct(ycbcr, dct_s);
// Y Cb Cr -> BGR
out = YCbCr2BGR(ycbcr, out);
// MSE, PSNR
mse = MSE(img, out);
psnr = PSNR(mse, 255);
bitrate = BITRATE();
std::cout << "MSE: " << mse << std::endl;
std::cout << "PSNR: " << psnr << std::endl;
std::cout << "bitrate: " << bitrate << std::endl;
cv::imwrite("out.jpg", out);
//cv::imshow("answer", out);
//cv::waitKey(0);
cv::destroyAllWindows();
return 0;
}