forked from gzr2017/ImageProcessing100Wen
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanswer_40.py
165 lines (120 loc) · 3.64 KB
/
answer_40.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import cv2
import numpy as np
import matplotlib.pyplot as plt
# DCT hyoer-parameter
T = 8
K = 8
channel = 3
# BGR -> Y Cb Cr
def BGR2YCbCr(img):
H, W, _ = img.shape
ycbcr = np.zeros([H, W, 3], dtype=np.float32)
ycbcr[..., 0] = 0.2990 * img[..., 2] + 0.5870 * img[..., 1] + 0.1140 * img[..., 0]
ycbcr[..., 1] = -0.1687 * img[..., 2] - 0.3313 * img[..., 1] + 0.5 * img[..., 0] + 128.
ycbcr[..., 2] = 0.5 * img[..., 2] - 0.4187 * img[..., 1] - 0.0813 * img[..., 0] + 128.
return ycbcr
# Y Cb Cr -> BGR
def YCbCr2BGR(ycbcr):
H, W, _ = ycbcr.shape
out = np.zeros([H, W, channel], dtype=np.float32)
out[..., 2] = ycbcr[..., 0] + (ycbcr[..., 2] - 128.) * 1.4020
out[..., 1] = ycbcr[..., 0] - (ycbcr[..., 1] - 128.) * 0.3441 - (ycbcr[..., 2] - 128.) * 0.7139
out[..., 0] = ycbcr[..., 0] + (ycbcr[..., 1] - 128.) * 1.7718
out = np.clip(out, 0, 255)
out = out.astype(np.uint8)
return out
# DCT weight
def DCT_w(x, y, u, v):
cu = 1.
cv = 1.
if u == 0:
cu /= np.sqrt(2)
if v == 0:
cv /= np.sqrt(2)
theta = np.pi / (2 * T)
return (( 2 * cu * cv / T) * np.cos((2*x+1)*u*theta) * np.cos((2*y+1)*v*theta))
# DCT
def dct(img):
H, W, _ = img.shape
F = np.zeros((H, W, channel), dtype=np.float32)
for c in range(channel):
for yi in range(0, H, T):
for xi in range(0, W, T):
for v in range(T):
for u in range(T):
for y in range(T):
for x in range(T):
F[v+yi, u+xi, c] += img[y+yi, x+xi, c] * DCT_w(x,y,u,v)
return F
# IDCT
def idct(F):
H, W, _ = F.shape
out = np.zeros((H, W, channel), dtype=np.float32)
for c in range(channel):
for yi in range(0, H, T):
for xi in range(0, W, T):
for y in range(T):
for x in range(T):
for v in range(K):
for u in range(K):
out[y+yi, x+xi, c] += F[v+yi, u+xi, c] * DCT_w(x,y,u,v)
out = np.clip(out, 0, 255)
out = np.round(out).astype(np.uint8)
return out
# Quantization
def quantization(F):
H, W, _ = F.shape
Q = np.array(((16, 11, 10, 16, 24, 40, 51, 61),
(12, 12, 14, 19, 26, 58, 60, 55),
(14, 13, 16, 24, 40, 57, 69, 56),
(14, 17, 22, 29, 51, 87, 80, 62),
(18, 22, 37, 56, 68, 109, 103, 77),
(24, 35, 55, 64, 81, 104, 113, 92),
(49, 64, 78, 87, 103, 121, 120, 101),
(72, 92, 95, 98, 112, 100, 103, 99)), dtype=np.float32)
for ys in range(0, H, T):
for xs in range(0, W, T):
for c in range(channel):
F[ys: ys + T, xs: xs + T, c] = np.round(F[ys: ys + T, xs: xs + T, c] / Q) * Q
return F
# JPEG without Hufman coding
def JPEG(img):
# BGR -> Y Cb Cr
ycbcr = BGR2YCbCr(img)
# DCT
F = dct(ycbcr)
# quantization
F = quantization(F)
# IDCT
ycbcr = idct(F)
# Y Cb Cr -> BGR
out = YCbCr2BGR(ycbcr)
return out
# MSE
def MSE(img1, img2):
H, W, _ = img1.shape
mse = np.sum((img1 - img2) ** 2) / (H * W * channel)
return mse
# PSNR
def PSNR(mse, vmax=255):
return 10 * np.log10(vmax * vmax / mse)
# bitrate
def BITRATE():
return 1. * T * K * K / T / T
# Read image
img = cv2.imread("imori.jpg").astype(np.float32)
# JPEG
out = JPEG(img)
# MSE
mse = MSE(img, out)
# PSNR
psnr = PSNR(mse)
# bitrate
bitrate = BITRATE()
print("MSE:", mse)
print("PSNR:", psnr)
print("bitrate:", bitrate)
# Save result
cv2.imshow("result", out)
cv2.waitKey(0)
cv2.imwrite("out.jpg", out)