-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
Copy pathinference_hf.py
172 lines (155 loc) · 7.07 KB
/
inference_hf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import argparse
import json, os
parser = argparse.ArgumentParser()
parser.add_argument('--base_model', default=None, type=str, required=True)
parser.add_argument('--lora_model', default=None, type=str,help="If None, perform inference on the base model")
parser.add_argument('--tokenizer_path',default=None,type=str)
parser.add_argument('--data_file',default=None, type=str,help="A file that contains instructions (one instruction per line)")
parser.add_argument('--with_prompt',action='store_true',help="wrap the input with the prompt automatically")
parser.add_argument('--interactive',action='store_true',help="run in the instruction mode (single-turn)")
parser.add_argument('--predictions_file', default='./predictions.json', type=str)
parser.add_argument('--gpus', default="0", type=str)
parser.add_argument('--only_cpu',action='store_true',help='only use CPU for inference')
parser.add_argument('--alpha',type=str,default="1.0", help="The scaling factor of NTK method, can be a float or 'auto'. ")
parser.add_argument('--load_in_8bit',action='store_true', help="Load the LLM in the 8bit mode")
args = parser.parse_args()
if args.only_cpu is True:
args.gpus = ""
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
import torch
from transformers import LlamaForCausalLM, LlamaTokenizer
from peft import PeftModel
from patches import apply_attention_patch, apply_ntk_scaling_patch
apply_attention_patch(use_memory_efficient_attention=True)
apply_ntk_scaling_patch(args.alpha)
generation_config = dict(
temperature=0.2,
top_k=40,
top_p=0.9,
do_sample=True,
num_beams=1,
repetition_penalty=1.1,
max_new_tokens=400
)
# The prompt template below is taken from llama.cpp
# and is slightly different from the one used in training.
# But we find it gives better results
prompt_input = (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n\n{instruction}\n\n### Response:\n\n"
)
sample_data = ["为什么要减少污染,保护环境?"]
def generate_prompt(instruction, input=None):
if input:
instruction = instruction + '\n' + input
return prompt_input.format_map({'instruction': instruction})
if __name__ == '__main__':
load_type = torch.float16
if torch.cuda.is_available():
device = torch.device(0)
else:
device = torch.device('cpu')
if args.tokenizer_path is None:
args.tokenizer_path = args.lora_model
if args.lora_model is None:
args.tokenizer_path = args.base_model
tokenizer = LlamaTokenizer.from_pretrained(args.tokenizer_path)
base_model = LlamaForCausalLM.from_pretrained(
args.base_model,
load_in_8bit=args.load_in_8bit,
torch_dtype=load_type,
low_cpu_mem_usage=True,
device_map='auto',
)
model_vocab_size = base_model.get_input_embeddings().weight.size(0)
tokenzier_vocab_size = len(tokenizer)
print(f"Vocab of the base model: {model_vocab_size}")
print(f"Vocab of the tokenizer: {tokenzier_vocab_size}")
if model_vocab_size!=tokenzier_vocab_size:
assert tokenzier_vocab_size > model_vocab_size
print("Resize model embeddings to fit tokenizer")
base_model.resize_token_embeddings(tokenzier_vocab_size)
if args.lora_model is not None:
print("loading peft model")
model = PeftModel.from_pretrained(base_model, args.lora_model,torch_dtype=load_type,device_map='auto',)
else:
model = base_model
if device==torch.device('cpu'):
model.float()
# test data
if args.data_file is None:
examples = sample_data
else:
with open(args.data_file,'r') as f:
examples = [l.strip() for l in f.readlines()]
print("first 10 examples:")
for example in examples[:10]:
print(example)
model.eval()
with torch.no_grad():
if args.interactive:
print("Start inference with instruction mode.")
print('='*85)
print("+ 该模式下仅支持单轮问答,无多轮对话能力。\n"
"+ 如要进行多轮对话,请使用llama.cpp或llamachat工具。")
print('-'*85)
print("+ This mode only supports single-turn QA.\n"
"+ If you want to experience multi-turn dialogue, please use llama.cpp or llamachat.")
print('='*85)
while True:
raw_input_text = input("Input:")
if len(raw_input_text.strip())==0:
break
if args.with_prompt:
input_text = generate_prompt(instruction=raw_input_text)
else:
input_text = raw_input_text
inputs = tokenizer(input_text,return_tensors="pt") #add_special_tokens=False ?
generation_output = model.generate(
input_ids = inputs["input_ids"].to(device),
attention_mask = inputs['attention_mask'].to(device),
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
**generation_config
)
s = generation_output[0]
output = tokenizer.decode(s,skip_special_tokens=True)
if args.with_prompt:
response = output.split("### Response:")[1].strip()
else:
response = output
print("Response: ",response)
print("\n")
else:
print("Start inference.")
results = []
for index, example in enumerate(examples):
if args.with_prompt is True:
input_text = generate_prompt(instruction=example)
else:
input_text = example
inputs = tokenizer(input_text,return_tensors="pt") #add_special_tokens=False ?
generation_output = model.generate(
input_ids = inputs["input_ids"].to(device),
attention_mask = inputs['attention_mask'].to(device),
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
**generation_config
)
s = generation_output[0]
output = tokenizer.decode(s,skip_special_tokens=True)
if args.with_prompt:
response = output.split("### Response:")[1].strip()
else:
response = output
print(f"======={index}=======")
print(f"Input: {example}\n")
print(f"Output: {response}\n")
results.append({"Input":input_text,"Output":response})
dirname = os.path.dirname(args.predictions_file)
os.makedirs(dirname,exist_ok=True)
with open(args.predictions_file,'w') as f:
json.dump(results,f,ensure_ascii=False,indent=2)
with open(dirname+'/generation_config.json','w') as f:
json.dump(generation_config,f,ensure_ascii=False,indent=2)