-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrad_cam.py
400 lines (327 loc) · 14.2 KB
/
grad_cam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import torch
import argparse
import cv2
import numpy as np
import torch
from torch.autograd import Function
from torchvision import models, transforms
import torchvision
import os
import numpy as np
import shutil
from torch.nn import DataParallel
from datetime import datetime
from torch.optim.lr_scheduler import MultiStepLR
from config import BATCH_SIZE, PROPOSAL_NUM, SAVE_FREQ, LR, WD, resume, save_dir,use_attribute, file_dir, max_epoch, need_attributes_idx,use_uniform_mean,anno_csv_path, use_gpu, save_name, model_size, pretrain
from config import BATCH_SIZE, SAVE_FREQ, LR, WD, resume, save_dir,use_attribute, file_dir_test, max_epoch, need_attributes_idx,use_uniform_mean,test_anno_csv_path, use_gpu, load_model_path,test_save_name,anno_csv_path, model_size, pretrain, bigger, model_name,load_file, load_time
from core import model, dataset,resnet
from core.utils import init_log, progress_bar
import pandas as pd
from IPython import embed
import matplotlib.pyplot as plt
import os
import shutil
import torch.utils.data
from torch.nn import DataParallel
from datetime import datetime
from torch.optim.lr_scheduler import MultiStepLR
from config import BATCH_SIZE, PROPOSAL_NUM, SAVE_FREQ, LR, WD, resume, save_dir,use_attribute, file_dir_test, max_epoch, need_attributes_idx,use_uniform_mean,test_anno_csv_path, use_gpu, load_model_path,save_name
import time
class FeatureExtractor():
""" Class for extracting activations and
registering gradients from targetted intermediate layers """
def __init__(self, model, target_layers):
self.model = model
self.target_layers = target_layers
self.gradients = []
def save_gradient(self, grad):
self.gradients.append(grad)
def __call__(self, x):
outputs = []
self.gradients = []
for name, module in self.model._modules.items():
#print("FeatureExtractor",name)
x = module(x)
if name in self.target_layers:
x.register_hook(self.save_gradient)
outputs += [x]
return outputs, x
class ModelOutputs():
""" Class for making a forward pass, and getting:
1. The network output.
2. Activations from intermeddiate targetted layers.
3. Gradients from intermeddiate targetted layers. """
def __init__(self, model, feature_module, target_layers):
self.model = model
self.feature_module = feature_module
self.feature_extractor = FeatureExtractor(self.feature_module, target_layers)
def get_gradients(self):
return self.feature_extractor.gradients
def __call__(self, x):
target_activations = []
for name, module in self.model._modules.items():
if module == self.feature_module:
#x = module(x)
target_activations, x = self.feature_extractor(x)
elif "avgpool" in name.lower():
x = module(x)
x = x.view(x.size(0),-1)
else:
#print("modelout",name)
#print("in shape",x.shape)
x = module(x)
#print("out shape",x.shape)
return target_activations, x
def preprocess_image(img):
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
preprocessing = transforms.Compose([
transforms.ToTensor(),
normalize,
])
return preprocessing(img.copy()).unsqueeze(0)
def show_cam_on_image(img, mask):
heatmap = cv2.applyColorMap(np.uint8(255 * mask), cv2.COLORMAP_JET)
heatmap = np.float32(heatmap) #/ 255
cam = heatmap + np.float32(img)
cam = cam / np.max(cam)
return np.uint8(255 * cam)
def save_grey(mask,path):
heatmap = np.uint8(255.0 * mask)
img = plt.imsave(path, heatmap)
#img.save(path)
class GradCam:
def __init__(self, model, feature_module, target_layer_names, use_cuda):
self.model = model
self.feature_module = feature_module
self.model.eval()
self.fc_weight = self.model.fc.weight
self.cuda = use_cuda
if self.cuda:
self.model = model.cuda()
self.model.zero_grad()
self.feature_module.zero_grad()
self.extractor = ModelOutputs(self.model, self.feature_module, target_layer_names)
def forward(self, input_img):
return self.model(input_img)
def __call__(self, input_img, target_category=None):
if self.cuda:
input_img = input_img.cuda()
features, output = self.extractor(input_img)
output_model, last_layer_feature = self.model(input_img)
last_layer_feature= torch.squeeze(last_layer_feature, 0)
#embed()
print("output_model",output_model)
print("output",output)
if target_category == None:
target_category = np.argmax(output.cpu().data.numpy())
one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32)
one_hot[0][target_category] = 1
one_hot = torch.from_numpy(one_hot).requires_grad_(True)
if self.cuda:
one_hot = one_hot.cuda()
one_hot = torch.sum(one_hot * output)
one_hot.backward(retain_graph=True)
grads_val = self.extractor.get_gradients()[-1].cpu().data.numpy()
target = features[-1]
target = target.cpu().data.numpy()[0, :]
last_layer_feature = last_layer_feature.cpu().data.numpy()
fc_weight = self.fc_weight[target_category,:].cpu().data.numpy()
weights = np.mean(grads_val, axis=(2, 3))[0, :]
# fcweight=10-3~-4, weight=10-4~-5
cam = np.zeros(target.shape[1:], dtype=np.float32)
fc_cam = np.zeros(target.shape[1:], dtype=np.float32)
for i, w in enumerate(weights):
cam += w * target[i, :, :]
fc_cam += fc_weight[i,] * last_layer_feature[i,:,:]
#embed()
print("fc_cam max",np.max(fc_cam))
print("fc_cam min",np.min(fc_cam))
print("fc_cam mean",np.mean(fc_cam))
cam = cam
fc_cam = np.abs(fc_cam)
cam = cv2.resize(cam, input_img.shape[2:])
r = np.max(cam) - np.min(cam)
cam = cam - np.min(cam)
cam = cam / r
fc_cam = cv2.resize(fc_cam, input_img.shape[2:])
r = np.max(fc_cam) - np.min(fc_cam)
fc_cam = fc_cam - np.min(fc_cam)
fc_cam = fc_cam / r
return cam,fc_cam
class GuidedBackpropReLU(Function):
@staticmethod
def forward(self, input_img):
positive_mask = (input_img > 0).type_as(input_img)
output = torch.addcmul(torch.zeros(input_img.size()).type_as(input_img), input_img, positive_mask)
self.save_for_backward(input_img, output)
return output
@staticmethod
def backward(self, grad_output):
input_img, output = self.saved_tensors
grad_input = None
positive_mask_1 = (input_img > 0).type_as(grad_output)
positive_mask_2 = (grad_output > 0).type_as(grad_output)
grad_input = torch.addcmul(torch.zeros(input_img.size()).type_as(input_img),
torch.addcmul(torch.zeros(input_img.size()).type_as(input_img), grad_output,
positive_mask_1), positive_mask_2)
return grad_input
class GuidedBackpropReLUModel:
def __init__(self, model, use_cuda):
self.model = model
self.model.eval()
self.cuda = use_cuda
if self.cuda:
self.model = model.cuda()
def recursive_relu_apply(module_top):
for idx, module in module_top._modules.items():
recursive_relu_apply(module)
if module.__class__.__name__ == 'ReLU':
module_top._modules[idx] = GuidedBackpropReLU.apply
# replace ReLU with GuidedBackpropReLU
recursive_relu_apply(self.model)
def forward(self, input_img):
return self.model(input_img)
def __call__(self, input_img, target_category=None):
if self.cuda:
input_img = input_img.cuda()
input_img = input_img.requires_grad_(True)
output,features = self.forward(input_img)
if target_category == None:
target_category = np.argmax(output.cpu().data.numpy())
one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32)
one_hot[0][target_category] = 1
one_hot = torch.from_numpy(one_hot).requires_grad_(True)
if self.cuda:
one_hot = one_hot.cuda()
one_hot = torch.sum(one_hot * output)
one_hot.backward(retain_graph=True)
output = input_img.grad.cpu().data.numpy()
output = output[0, :, :, :]
return output
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--use-cuda', action='store_true', default=False,
help='Use NVIDIA GPU acceleration')
parser.add_argument('--image-path', type=str, default='./examples/both.png',
help='Input image path')
args = parser.parse_args()
args.use_cuda = args.use_cuda and torch.cuda.is_available()
if args.use_cuda:
print("Using GPU for acceleration")
else:
print("Using CPU for computation")
return args
def deprocess_image(img):
""" see https://github.com/jacobgil/keras-grad-cam/blob/master/grad-cam.py#L65 """
img = img - np.mean(img)
img = img / (np.std(img) + 1e-5)
img = img * 0.1
img = img + 0.5
img = np.clip(img, 0, 1)
return np.uint8(img*255)
from IPython import embed
def write_output(image_path, output_path, grad_cam, model, use_cuda, target_category,gb_model):
img = cv2.imread(image_path)#, 1)
img = np.float32(img) #/ 255
# Opencv loads as BGR:
img = img[:, :, ::-1]
img = cv2.resize(img, (224,224), interpolation = cv2.INTER_AREA)
#embed()
print("after resize image shape",img.shape)
img_c = img.copy().transpose(2,0,1)
input_img = torch.tensor(img_c).unsqueeze(0)#preprocess_image(img)
# If None, returns the map for the highest scoring category.
# Otherwise, targets the requested category.
target_category = 0 #None
grayscale_cam, fc_cam = grad_cam(input_img, target_category)
grayscale_cam = cv2.resize(grayscale_cam, (img.shape[1], img.shape[0]))
fc_cam = cv2.resize(fc_cam, (img.shape[1], img.shape[0]))
save_grey(grayscale_cam,'grey_cam.png')
save_grey(fc_cam,'grey_fc_cam.png')
cam = show_cam_on_image(img, grayscale_cam)
fc_cam = show_cam_on_image(img, fc_cam)
gb = gb_model(input_img, target_category=target_category)
gb = gb.transpose((1, 2, 0))
cam_mask = cv2.merge([grayscale_cam, grayscale_cam, grayscale_cam])
cam_gb = deprocess_image(cam_mask*gb)
gb = deprocess_image(gb)
cv2.imwrite(output_path + "cam.jpg", cam)
#cv2.imwrite(output_path + "fc_cam.jpg", fc_cam)
cv2.imwrite(output_path + 'gb.jpg', gb)
#cv2.imwrite(output_path + 'cam_gb.jpg', cam_gb)
if __name__ == '__main__':
""" python grad_cam.py <path_to_image>
1. Loads an image with opencv.
2. Preprocesses it for VGG19 and converts to a pytorch variable.
3. Makes a forward pass to find the category index with the highest score,
and computes intermediate activations.
Makes the visualization. """
#args = get_args()
use_cuda = False
num_of_need_attri = len(need_attributes_idx)
test_id =0
num_of_need_attri = 3 #len(need_attributes_idx)
model = resnet.resnet101(pretrained=False,num_classes = num_of_need_attri)
model.eval()
load_model_path = os.path.join(save_dir, '20210219_171456part0_Feb19res101','model_param.pkl')
if load_model_path:
ckpt = torch.load(load_model_path)
for name in list(ckpt.keys()):
ckpt[name.replace('module.','')] = ckpt[name]
del ckpt[name]
model.load_state_dict(ckpt)
grad_cam = GradCam(model=model, feature_module=model.layer4, \
target_layer_names=["2"], use_cuda=use_cuda)
#embed()
"""
img = cv2.imread(image_path)
img = cv2.resize(img, (224,224), interpolation = cv2.INTER_AREA)
img = img.transpose(2,0,1)
"""
images_dir = '/data/shimr/teeth/'
target_category = 1
gb_model = GuidedBackpropReLUModel(model=model, use_cuda=use_cuda)
if False:
for patient_id in os.listdir(images_dir):
patient_dir = os.path.join(images_dir,patient_id)
for tooth_id in os.listdir(patient_dir):
if tooth_id.startswith('crop') and tooth_id.endswith('tif'):
image_path = os.path.join(patient_dir,tooth_id)
print(image_path)
output_path = image_path.replace('.tif','')
write_output(image_path, output_path, grad_cam, model, use_cuda, target_category,gb_model)
num_id = '015'
image_path = "/data/shimr/teeth/204/cropped_image204,22 Maxilla, Application.tif"
output_path = "/data/shimr/visual/"
#print(os.listdir(image_path))
#for p in os.listdir(image_path):
# if p.startswith('crop'):
# image_path = os.path.join(image_path,p)
# break
write_output(image_path, output_path, grad_cam, model, use_cuda, target_category,gb_model)
"""
img = cv2.imread(image_path, 1)
img = np.float32(img) / 255
# Opencv loads as BGR:
img = img[:, :, ::-1]
img = cv2.resize(img, (224,224), interpolation = cv2.INTER_AREA)
print("after resize image shape",img.shape)
#img = img.transpose(2,0,1)
input_img = preprocess_image(img)
# If None, returns the map for the highest scoring category.
# Otherwise, targets the requested category.
target_category = 1 #None
grayscale_cam,fc = grad_cam(input_img, target_category)
grayscale_cam = cv2.resize(grayscale_cam, (img.shape[1], img.shape[0]))
cam = show_cam_on_image(img, grayscale_cam)
gb_model = GuidedBackpropReLUModel(model=model, use_cuda=use_cuda)
gb = gb_model(input_img, target_category=target_category)
gb = gb.transpose((1, 2, 0))
cam_mask = cv2.merge([grayscale_cam, grayscale_cam, grayscale_cam])
cam_gb = deprocess_image(cam_mask*gb)
gb = deprocess_image(gb)
cv2.imwrite("cam.jpg", cam)
cv2.imwrite('gb.jpg', gb)
cv2.imwrite('cam_gb.jpg', cam_gb)
"""