-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathutils.py
executable file
·1286 lines (1089 loc) · 47.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import torch
import json
import joblib
import pickle
import torch.utils.data as data_utils
import numpy as np
import scipy.sparse as sp
import pandas as pd
from neg_sampler import *
from pathlib import Path
from sklearn.metrics import log_loss, roc_auc_score
from torch.utils.data.distributed import DistributedSampler
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from tqdm import tqdm
from model.ctr.inputs import *
tqdm.pandas()
def select_sampler(train_data, val_data, test_data, user_count, item_count, args):
if args.sample == 'random':
return RandomNegativeSampler(train_data, val_data, test_data, user_count, item_count, args.negsample_size, args.seed, args.negsample_savefolder)
elif args.sample == 'popular':
return PopularNegativeSampler(train_data, val_data, test_data, user_count, item_count, args.negsample_size, args.seed, args.negsample_savefolder)
def mtl_data(path=None, args=None):
if not path:
return
df = pd.read_csv(path, usecols=["user_id", "item_id", "click", "like", "video_category", "gender", "age", "hist_1", "hist_2",
"hist_3", "hist_4", "hist_5", "hist_6", "hist_7", "hist_8", "hist_9", "hist_10"])
# df = df[:100000]
df['video_category'] = df['video_category'].astype(str)
df = sample_data(df)
if args.mtl_task_num == 2:
label_columns = ['click', 'like']
categorical_columns = ["user_id", "item_id", "video_category", "gender", "age", "hist_1", "hist_2",
"hist_3", "hist_4", "hist_5", "hist_6", "hist_7", "hist_8", "hist_9", "hist_10"]
elif args.mtl_task_num == 1:
label_columns = ['click']
categorical_columns = ["user_id", "item_id", "video_category", "gender", "age", "hist_1", "hist_2",
"hist_3", "hist_4", "hist_5", "hist_6", "hist_7", "hist_8", "hist_9", "hist_10"]
else:
label_columns = ['like']
categorical_columns = ["user_id", "item_id", "video_category", "gender", "age", "hist_1", "hist_2",
"hist_3", "hist_4", "hist_5", "hist_6", "hist_7", "hist_8", "hist_9", "hist_10"]
user_columns = ["user_id", "gender", "age"]
for col in tqdm(categorical_columns):
le = LabelEncoder()
df[col] = le.fit_transform(df[col])
new_columns = categorical_columns + label_columns
df = df.reindex(columns=new_columns)
user_feature_dict, item_feature_dict = {}, {}
for idx, col in tqdm(enumerate(df.columns)):
if col not in label_columns:
if col in user_columns:
user_feature_dict[col] = (len(df[col].unique()), idx)
else:
item_feature_dict[col] = (len(df[col].unique()), idx)
df = df.sample(frac=1)
train_len = int(len(df) * 0.8)
train_df = df[:train_len]
tmp_df = df[train_len:]
val_df = tmp_df[:int(len(tmp_df)/2)]
test_df = tmp_df[int(len(tmp_df)/2):]
return train_df, val_df, test_df, user_feature_dict, item_feature_dict
def set_fenbu(row_data):
tmp1 = row_data[row_data.click.isin([0])]
tmp2 = row_data[row_data.click.isin([1])]
data = []
j = 0
for i in tqdm(range(int(len(tmp2)/1000))):
data.append(tmp2.iloc[i, :].values.tolist())
data.extend(tmp1.iloc[j : j + 3, :].values.tolist())
j = j + 3
new_data = pd.DataFrame(data, columns=row_data.columns)
return new_data
def sample_data(df):
p_df = df[df.click.isin([1])]
n_df = df[df.click.isin([0])]
del df
n_df = n_df.sample(n=len(p_df)*2)
df = p_df.append(n_df)
del p_df, n_df
df = df.sample(frac=1)
return df
def ctr_share_dataset(path=None):
if not path:
return
df = pd.read_csv(path, usecols=["user_id", "item_id", "click", "video_category", "gender", "age", "hist_1", "hist_2",
"hist_3", "hist_4", "hist_5", "hist_6", "hist_7", "hist_8", "hist_9", "hist_10"])
df['video_category'] = df['video_category'].astype(str)
df = sample_data(df)
sparse_features = ["user_id", "item_id", "video_category", "gender", "age"]
hist_feature = ["hist_1", "hist_2",
"hist_3", "hist_4", "hist_5", "hist_6", "hist_7", "hist_8", "hist_9", "hist_10"]
lbe = LabelEncoder()
df['click'] = lbe.fit_transform(df['click'])
hist_enc = LabelEncoder()
for feat in tqdm(sparse_features + hist_feature): #
if 'item_id' in feat or 'hist' in feat:
df[feat] = hist_enc.fit_transform(df[feat])
else:
lbe = LabelEncoder()
df[feat] = lbe.fit_transform(df[feat])
hist_set = set(df['hist_1'])
hist_set.update(df['hist_2'])
hist_set.update(df['hist_3'])
hist_set.update(df['hist_4'])
hist_set.update(df['hist_5'])
hist_set.update(df['hist_6'])
hist_set.update(df['hist_7'])
hist_set.update(df['hist_8'])
hist_set.update(df['hist_9'])
hist_set.update(df['hist_10'])
hist_set.update(df['item_id'])
# hist concat
hist_df = df[["user_id", "hist_1", "hist_2", "hist_3", "hist_4", "hist_5", "hist_6", "hist_7", "hist_8", "hist_9",
"hist_10"]]
hist_df = hist_df.drop_duplicates()
hist_dict = hist_df.set_index('user_id').T.to_dict('list')
df['hist_item_id'] = df['user_id']
df['hist_item_id'] = df['hist_item_id'].map(hist_dict)
# df['hist_item_id'] = np.ndarray(df['hist_item_id'])
df.drop(columns=["hist_1", "hist_2", "hist_3", "hist_4", "hist_5", "hist_6", "hist_7", "hist_8", "hist_9", "hist_10"], inplace=True)
df['seq_length'] = 10
fixlen_feature_columns = []
for feat in sparse_features:
if feat == 'item_id':
fixlen_feature_columns.append(SparseFeat(feat, len(hist_set)))
else:
fixlen_feature_columns.append(SparseFeat(feat, df[feat].nunique()))
fixlen_feature_columns += [
VarLenSparseFeat(
SparseFeat('hist_item_id', vocabulary_size=len(hist_set), embedding_dim=32),
maxlen=10, length_name="seq_length")]
linear_feature_columns = fixlen_feature_columns
dnn_feature_columns = fixlen_feature_columns
feature_names = get_feature_names(linear_feature_columns + dnn_feature_columns)
train, test = train_test_split(df, test_size=0.1)
del df
train_hist_item = np.array(train['hist_item_id'].values.tolist())
test_hist_item = np.array(test['hist_item_id'].values.tolist())
train_model_input = {name: train[name] for name in feature_names}
train_model_input['hist_item_id'] = train_hist_item
test_model_input = {name: test[name] for name in feature_names}
test_model_input['hist_item_id'] = test_hist_item
return train, test, train_model_input, test_model_input, linear_feature_columns, dnn_feature_columns
def ctr_din_dataset(path=None):
if not path:
return
df = pd.read_csv(path, usecols=["user_id", "item_id", "click", "video_category", "gender", "age", "hist_1", "hist_2",
"hist_3", "hist_4", "hist_5", "hist_6", "hist_7", "hist_8", "hist_9", "hist_10"])
df['video_category'] = df['video_category'].astype(str)
df = sample_data(df)
sparse_features = ["user_id", "item_id", "video_category", "gender", "age"]
hist_feature = ["hist_1", "hist_2",
"hist_3", "hist_4", "hist_5", "hist_6", "hist_7", "hist_8", "hist_9", "hist_10"]
lbe = LabelEncoder()
df['click'] = lbe.fit_transform(df['click'])
#
hist_enc = LabelEncoder()
for feat in tqdm(sparse_features + hist_feature):
if 'item_id' in feat or 'hist' in feat:
df[feat] = hist_enc.fit_transform(df[feat])
else:
lbe = LabelEncoder()
df[feat] = lbe.fit_transform(df[feat])
hist_set = set(df['hist_1'])
hist_set.update(df['hist_2'])
hist_set.update(df['hist_3'])
hist_set.update(df['hist_4'])
hist_set.update(df['hist_5'])
hist_set.update(df['hist_6'])
hist_set.update(df['hist_7'])
hist_set.update(df['hist_8'])
hist_set.update(df['hist_9'])
hist_set.update(df['hist_10'])
hist_set.update(df['item_id'])
# hist concat
hist_df = df[["user_id", "hist_1", "hist_2", "hist_3", "hist_4", "hist_5", "hist_6", "hist_7", "hist_8", "hist_9",
"hist_10"]]
hist_df = hist_df.drop_duplicates()
hist_dict = hist_df.set_index('user_id').T.to_dict('list')
df['hist_item_id'] = df['user_id']
df['hist_item_id'] = df['hist_item_id'].map(hist_dict)
df.drop(columns=["hist_1", "hist_2", "hist_3", "hist_4", "hist_5", "hist_6", "hist_7", "hist_8", "hist_9", "hist_10"], inplace=True)
df['seq_length'] = 10
fixlen_feature_columns = []
for feat in sparse_features:
if feat == 'item_id':
fixlen_feature_columns.append(SparseFeat(feat, len(hist_set)))
else:
fixlen_feature_columns.append(SparseFeat(feat, df[feat].nunique()))
hist_list = ['item_id']
fixlen_feature_columns += [
VarLenSparseFeat(
SparseFeat('hist_item_id', vocabulary_size=len(hist_set), embedding_dim=32),
maxlen=10, length_name="seq_length")]
linear_feature_columns = fixlen_feature_columns
dnn_feature_columns = fixlen_feature_columns
feature_names = get_feature_names(linear_feature_columns + dnn_feature_columns)
train, test = train_test_split(df, test_size=0.1)
del df
train_hist_item = np.array(train['hist_item_id'].values.tolist())
test_hist_item = np.array(test['hist_item_id'].values.tolist())
train_model_input = {name: train[name] for name in feature_names}
train_model_input['hist_item_id'] = train_hist_item
test_model_input = {name: test[name] for name in feature_names}
test_model_input['hist_item_id'] = test_hist_item
return train, test, train_model_input, test_model_input, dnn_feature_columns, hist_list
def gen_list(hist):
data = []
for key, value in tqdm(hist.items()):
for v in value:
data.append([key, v])
return data
def new_cf(args):
df = pd.read_csv(args.dataset_path, usecols=['user_id', 'item_id', 'click'])
df = df[df.click.isin([1])]
user_counts = df.groupby('user_id').size()
user_subset = np.in1d(df.user_id, user_counts[user_counts >= args.item_min].index)
filter_df = df[user_subset].reset_index(drop=True)
del df
assert (filter_df.groupby('user_id').size() < args.item_min).sum() == 0
user_count = len(set(filter_df['user_id']))
item_count = len(set(filter_df['item_id']))
# reset_ob = reset_df()
filter_df = category_encoding(filter_df)
return filter_df, user_count, item_count
def get_ur(df):
"""
Method of getting user-rating pairs
Parameters
----------
df : pd.DataFrame, rating dataframe
Returns
-------
ur : dict, dictionary stored user-items interactions
"""
print("Method of getting user-rating pairs")
ur = df.groupby('user_id').item_id.apply(list).to_dict()
return ur
def category_encoding(df):
df['user_id'] = pd.Categorical(df['user_id']).codes
df['item_id'] = pd.Categorical(df['item_id']).codes
return df
def gen_hist_matrix(data, user_num, item_num, train_dict):
max_len = 0
for _, v in train_dict.items():
if max_len < len(v):
max_len = len(v)
if max_len > item_num * 0.2:
print(f'Max value of user history interaction records has reached: {max_len / item_num * 100:.4f}% of the total.')
history_matrix = np.zeros((user_num+1, max_len), dtype=np.int64)
history_value = np.zeros((user_num+1, max_len))
history_len = np.zeros(user_num+1, dtype=np.int64)
for user, item in data:
history_matrix[user, history_len[user]] = item
history_value[user, history_len[user]] = 1
history_len[user] += 1
return torch.LongTensor(history_matrix), torch.FloatTensor(history_value), torch.LongTensor(history_len)
def get_history_matrix(df, args, row='user_id', use_config_value_name=False):
'''
get the history interactions by user/item
'''
# logger = config['logger']
assert row in df.columns, f'invalid name {row}: not in columns of history dataframe'
# uid_name, iid_name = config['UID_NAME'], config['IID_NAME']
user_ids, item_ids = df['user_id'].values, df['item_id'].values
value_name = 'click' if use_config_value_name else None
user_num, item_num = args.num_users, args.num_items
values = np.ones(len(df)) if value_name is None else df[value_name].values
if row == 'user':
row_num, max_col_num = user_num, item_num
row_ids, col_ids = user_ids, item_ids
else: # 'item'
row_num, max_col_num = item_num, user_num
row_ids, col_ids = item_ids, user_ids
history_len = np.zeros(row_num, dtype=np.int16)
for row_id in row_ids:
history_len[row_id] += 1
col_num = np.max(history_len)
col_num = col_num.astype(int)
if col_num > max_col_num * 0.2:
print(f'Max value of {row}\'s history interaction records has reached: {col_num / max_col_num * 100:.4f}% of the total.')
history_matrix = np.zeros((row_num, col_num), dtype=np.int16)
history_value = np.zeros((row_num, col_num), dtype=np.int16)
history_len[:] = 0
for row_id, value, col_id in zip(row_ids, values, col_ids):
history_matrix[row_id, history_len[row_id]] = col_id
history_value[row_id, history_len[row_id]] = value
history_len[row_id] += 1
return torch.LongTensor(history_matrix), torch.FloatTensor(history_value), torch.LongTensor(history_len)
def get_inter_matrix(df, args, form='coo'):
'''
get the whole sparse interaction matrix
'''
print("get the whole sparse interaction matrix")
user_num, item_num = args.num_users, args.num_items
src, tar = df['user_id'].values, df['item_id'].values
data = df['click'].values
mat = sp.coo_matrix((data, (src, tar)), shape=(user_num, item_num))
if form == 'coo':
return mat
elif form == 'csr':
return mat.tocsr()
else:
raise NotImplementedError(f'Sparse matrix format [{form}] has not been implemented...')
def build_candidates_set(test_ur, train_ur, args, drop_past_inter=True):
"""
method of building candidate items for ranking
Parameters
----------
test_ur : dict, ground_truth that represents the relationship of user and item in the test set
train_ur : dict, this represents the relationship of user and item in the train set
item_num : No. of all items
cand_num : int, the number of candidates
drop_past_inter : drop items already appeared in train set
Returns
-------
test_ucands : dict, dictionary storing candidates for each user in test set
"""
item_num = args.num_items
candidates_num = args.cand_num
test_ucands, test_u = [], []
for u, r in tqdm(test_ur.items()):
sample_num = candidates_num - len(r) if len(r) <= candidates_num else 0
if sample_num == 0:
samples = np.random.choice(list(r), candidates_num)
else:
pos_items = list(r) + list(train_ur[u]) if drop_past_inter else list(r)
# neg_items = np.setdiff1d(np.arange(item_num), pos_items)
# samples = np.random.choice(neg_items, size=sample_num)
samples = []
for _ in range(sample_num):
item = np.random.choice(item_num)
while item in pos_items or item in samples:
item = np.random.choice(item_num)
samples.append(item)
samples = np.array(samples)
samples = np.concatenate((samples, list(r)), axis=None)
test_ucands.append([u, samples])
test_u.append(u)
return test_u, test_ucands
class BasicDataset(data_utils.Dataset):
def __init__(self, samples):
'''
convert array-like <u, i, j> / <u, i, r> / <target_i, context_i, label>
Parameters
----------
samples : np.array
samples generated by sampler
'''
super(BasicDataset, self).__init__()
self.data = samples
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return self.data[index][0], self.data[index][1], self.data[index][2]
def ctrdataset(path=None):
if not path:
return
df = pd.read_csv(path, usecols=["user_id", "item_id", "click", "video_category", "gender", "age", "hist_1", "hist_2",
"hist_3", "hist_4", "hist_5", "hist_6", "hist_7", "hist_8", "hist_9", "hist_10"])
df['video_category'] = df['video_category'].astype(str)
df = sample_data(df)
sparse_features = ["user_id", "item_id", "video_category", "gender", "age", "hist_1", "hist_2",
"hist_3", "hist_4", "hist_5", "hist_6", "hist_7", "hist_8", "hist_9", "hist_10"]
lbe = LabelEncoder()
df['click'] = lbe.fit_transform(df['click'])
for feat in tqdm(sparse_features):
lbe = LabelEncoder()
df[feat] = lbe.fit_transform(df[feat])
fixlen_feature_columns = [SparseFeat(feat, df[feat].nunique())
for feat in sparse_features]
linear_feature_columns = fixlen_feature_columns
dnn_feature_columns = fixlen_feature_columns
feature_names = get_feature_names(linear_feature_columns + dnn_feature_columns)
train, test = train_test_split(df, test_size=0.1)
train_model_input = {name: train[name] for name in feature_names}
test_model_input = {name: test[name] for name in feature_names}
return train, test, train_model_input, test_model_input, linear_feature_columns, dnn_feature_columns
def split_warm_hot(df, item_min):
user_counts = df.groupby('user_id').size()
w_user_subset = np.in1d(df.user_id, user_counts[user_counts >= item_min].index)
c_user_subset = np.in1d(df.user_id, user_counts[(user_counts <= 5) & (user_counts > 1)].index)
w_filter_df = df[w_user_subset].reset_index(drop=True)
c_filter_df = df[c_user_subset].reset_index(drop=True)
return w_filter_df, c_filter_df
def transferdataset(args):
path = args.path
item_min = args.item_min
if not path:
return
df = pd.read_csv(path, usecols=['user_id', 'item_id', 'click'])
df = df[df.click.isin([1])]
user_counts = df.groupby('user_id').size()
user_subset = np.in1d(df.user_id, user_counts[user_counts >= item_min].index)
filter_df = df[user_subset].reset_index(drop=True)
user_count = len(set(filter_df['user_id']))
item_count = len(set(filter_df['item_id']))
assert (filter_df.groupby('user_id').size() < item_min).sum() == 0
del df
reset_ob = reset_df()
filter_df = reset_ob.fit_transform(filter_df)
user_history = {}
print("+++user_history+++")
savefile_path = Path("data/history_{}.pkl".format(args.seed))
if savefile_path.is_file():
with open(savefile_path, "rb") as load_f:
user_history = pickle.load(load_f)
else:
for uid in tqdm(filter_df.user_id.unique()):
dataframe = filter_df[filter_df.user_id == uid].item_id
sequence = dataframe.values.tolist()
user_history[uid] = sequence
with open(savefile_path, "wb") as dump_f:
pickle.dump(user_history, dump_f)
return filter_df, user_history, user_count, item_count
def sequencedataset(item_min, args, path=None):
if '2_new' in path:
df = pd.read_csv(path, usecols=['user_id', 'item_id', 'like'])
df = df[df.like.isin([1])]
else:
df = pd.read_csv(path, usecols=['user_id', 'item_id', 'click'])
df = df[df.click.isin([1])]
user_counts = df.groupby('user_id').size()
user_subset = np.in1d(df.user_id, user_counts[user_counts >= item_min].index)
filter_df = df[user_subset].reset_index(drop=True)
assert (filter_df.groupby('user_id').size() < item_min).sum() == 0
user_count = len(set(filter_df['user_id']))
item_count = len(set(filter_df['item_id']))
del df
reset_ob = reset_df()
filter_df = reset_ob.fit_transform(filter_df)
print("+++user_history+++")
user_history = filter_df.groupby('user_id').item_id.apply(list).to_dict()
return filter_df, user_history, user_count, item_count
def data_count(df, item_min, target=False):
user_counts = df.groupby('user_id').size()
if target:
filter_df = df
else:
user_subset = np.in1d(df.user_id, user_counts[user_counts >= item_min].index)
filter_df = df[user_subset].reset_index(drop=True)
assert (filter_df.groupby('user_id').size() < item_min).sum() == 0
user_count = len(set(filter_df['user_id']))
item_count = len(set(filter_df['item_id']))
return filter_df, user_count, item_count
def construct_data(args, item_min):
path1 = args.target_path
path2 = args.source_path
if args.task != 2:
df1 = pd.read_csv(path1, usecols=['user_id', 'item_id', 'click'])
df1 = df1[df1.click.isin([1])]
else:
df1 = pd.read_csv(path1, usecols=['user_id', 'item_id', 'like'])
df1 = df1[df1.like.isin([1])]
df2 = pd.read_csv(path2, usecols=['user_id', 'item_id', 'click'])
df2 = df2[df2.click.isin([1])]
user_counts = df2.groupby('user_id').size()
user_subset = np.in1d(df2.user_id, user_counts[user_counts >= item_min].index)
df2 = df2[user_subset].reset_index(drop=True)
assert (df2.groupby('user_id').size() < item_min).sum() == 0
s_item_count = len(set(df2['item_id']))
reset_ob = cold_reset_df()
df2, df1 = reset_ob.fit_transform(df2, df1)
user1 = set(df1.user_id.values.tolist())
user2 = set(df2.user_id.values.tolist())
user = user1 & user2
df1 = df1[df1.user_id.isin(list(user))]
df2 = df2[df2.user_id.isin(list(user))]
new_data1 = []
new_data2 = []
for u in user:
tmp_data2 = df2[df2.user_id == u][:-3].values.tolist()
if 'cold' in args.task_name:
tmp_data1 = df1[df1.user_id == u].values.tolist()
else:
if args.task == 1:
tmp_data1 = df1[df1.user_id == u][-3:].values.tolist()
else:
tmp_data1 = df1[df1.user_id == u].values.tolist()
new_data1.extend(tmp_data1)
new_data2.extend(tmp_data2)
new_data1 = pd.DataFrame(new_data1, columns=df1.columns)
new_data2 = pd.DataFrame(new_data2, columns=df2.columns)
user_count = len(set(new_data1.user_id.values.tolist()))
reset_item = item_reset_df()
new_data1 = reset_item.fit_transform(new_data1)
t_item_count = len(set(new_data1['item_id']))
return new_data1, new_data2, user_count, t_item_count, s_item_count
def construct_ch_data(args, item_min):
path1 = args.target_path
path2 = args.source_path
df1 = pd.read_csv(path1, usecols=['user_id', 'item_id', 'click'])
df1 = df1[df1.click.isin([1])]
df2 = pd.read_csv(path2, usecols=['user_id', 'item_id', 'click'])
df2 = df2[df2.click.isin([1])]
user_counts = df2.groupby('user_id').size()
user_subset = np.in1d(df2.user_id, user_counts[user_counts >= item_min].index)
df2 = df2[user_subset].reset_index(drop=True)
assert (df2.groupby('user_id').size() < item_min).sum() == 0
s_item_count = len(set(df2['item_id']))
reset_ob = cold_reset_df()
df2, df1 = reset_ob.fit_transform(df2, df1)
user1 = set(df1.user_id.values.tolist())
user2 = set(df2.user_id.values.tolist())
user = user1 & user2
# df = df[:100000]
df1 = df1[df1.user_id.isin(list(user))]
df2 = df2[df2.user_id.isin(list(user))]
# cold and hot user
user_counts1 = df1.groupby('user_id').size()
cold_user_ind = np.in1d(df1.user_id, user_counts1[user_counts1 <= 5].index)
hot_user_ind = np.in1d(df1.user_id, user_counts1[user_counts1 > 5].index)
cold_user = set(df1[cold_user_ind].user_id.values.tolist())
hot_user = set(df1[hot_user_ind].user_id.values.tolist())
new_data1 = []
new_data2 = []
for u in user:
tmp_data2 = df2[df2.user_id == u][:-3].values.tolist()
tmp_data1 = df1[df1.user_id == u].values.tolist()
new_data1.extend(tmp_data1)
new_data2.extend(tmp_data2)
new_data1 = pd.DataFrame(new_data1, columns=df1.columns)
new_data2 = pd.DataFrame(new_data2, columns=df2.columns)
user_count = len(set(new_data1.user_id.values.tolist()))
reset_item = item_reset_df()
new_data1 = reset_item.fit_transform(new_data1)
t_item_count = len(set(new_data1['item_id']))
return new_data1, new_data2, user_count, t_item_count, s_item_count, cold_user, hot_user
def colddataset(item_min, args, path=None):
if args.ch:
target_data, source_data, user_count, t_item_count, s_item_count, cold_user, hot_user = construct_ch_data(args, item_min)
else:
target_data, source_data, user_count, t_item_count, s_item_count = construct_data(args, item_min)
print("+++user_history+++")
user_history = source_data.groupby('user_id').item_id.apply(list).to_dict()
target = target_data.groupby('user_id').item_id.apply(list).to_dict()
if args.ch:
hot_examples = []
cold_examples = []
for u, t_list in tqdm(target.items()):
if u in cold_user:
for t in t_list:
e_list = [user_history[u] + [0], t]
cold_examples.append(e_list)
else:
for t in t_list:
e_list = [user_history[u] + [0], t]
hot_examples.append(e_list)
cold_examples = pd.DataFrame(cold_examples, columns=['source', 'target'])
hot_examples = pd.DataFrame(hot_examples, columns=['source', 'target'])
return cold_examples, hot_examples, user_count, s_item_count, t_item_count
else:
examples = []
for u, t_list in tqdm(target.items()):
for t in t_list:
e_list = [user_history[u] + [0], t]
examples.append(e_list)
examples = pd.DataFrame(examples, columns=['source', 'target'])
return examples, user_count, s_item_count, t_item_count
def lifelongdataset(item_min, args, path=None):
target_data, source_data, user_count, t_item_count, s_item_count = construct_data(args, item_min)
print("+++user_history+++")
user_history = source_data.groupby('user_id').item_id.apply(list).to_dict()
target = target_data.groupby('user_id').item_id.apply(list).to_dict()
examples = []
for u, t_list in tqdm(target.items()):
for t in t_list:
e_list = [user_history[u] + [0], t]
examples.append(e_list)
examples = pd.DataFrame(examples, columns=['source', 'target'])
return examples, user_count, s_item_count, t_item_count
def profiledata(item_min, args, path=None):
df = pd.read_csv(path, usecols=['user_id', 'item_id', 'click', 'gender', 'age'])
df = df[df.click.isin([1])] # [:500000]
user_counts = df.groupby('user_id').size()
user_subset = np.in1d(df.user_id, user_counts[user_counts >= item_min].index)
filter_df = df[user_subset].reset_index(drop=True)
assert (filter_df.groupby('user_id').size() < item_min).sum() == 0
item_count = len(set(filter_df['item_id']))
del df
reset_ob = reset_df()
df = reset_ob.fit_transform(filter_df)
if args.user_profile == 'gender':
df = df[df.gender != 0]
df['gender'] = df['gender'] - 1
user_count = len(set(df['user_id']))
label_count = len(set(df['gender']))
print("+++user_gender_dataframe+++")
gender_list = []
user_history = df.groupby('user_id').item_id.apply(list).to_dict()
gender = df.groupby('user_id').gender.apply(list).to_dict()
for u, his in user_history.items():
tmp_list = [u, his[:-3], gender[u][0]]
gender_list.append(tmp_list)
profile_df = pd.DataFrame(gender_list, columns=['uid', 'history', 'profile'])
elif args.user_profile == 'age':
df = df[df.age != 0]
df['age'] = df['age'] - 1
user_count = len(set(df['user_id']))
label_count = len(set(df['age']))
print("+++user_age_dataframe+++")
age_list = []
user_history = df.groupby('user_id').item_id.apply(list).to_dict()
age = df.groupby('user_id').age.apply(list).to_dict()
for u, his in user_history.items():
tmp_list = [u, his[:-3], age[u][0]]
age_list.append(tmp_list)
profile_df = pd.DataFrame(age_list, columns=['uid', 'history', 'profile'])
return profile_df, user_count, item_count, label_count
def utils(df, args):
if args.user_profile == 'gender':
df = df[df.gender != 0]
df = df[df.click.isin([1])]
df['gender'] = df['gender'] - 1
user_counts = df.groupby('user_id').size()
user_subset = np.in1d(df.user_id, user_counts[user_counts >= args.item_min].index)
filter_df = df[user_subset].reset_index(drop=True)
elif args.user_profile == 'age':
df = df[df.age != 0]
df = df[df.click.isin([1])]
df['age'] = df['age'] - 1
user_counts = df.groupby('user_id').size()
user_subset = np.in1d(df.user_id, user_counts[user_counts >= args.item_min].index)
filter_df = df[user_subset].reset_index(drop=True)
return filter_df
def gender_df(filter_df, args):
if args.user_profile == 'gender':
gender_list = []
for uid in tqdm(filter_df.user_id.unique()):
dataframe = filter_df[filter_df.user_id == uid].item_id
sequence = dataframe.values.tolist()
gender = filter_df[filter_df.user_id == uid].gender.values[0]
list = [uid, sequence, gender]
gender_list.append(list)
profile_df = pd.DataFrame(gender_list, columns=['uid', 'history', 'profile'])
else:
age_list = []
for uid in tqdm(filter_df.user_id.unique()):
dataframe = filter_df[filter_df.user_id == uid].item_id
sequence = dataframe.values.tolist()
age = filter_df[filter_df.user_id == uid].age.values[0]
list = [uid, sequence, age]
age_list.append(list)
profile_df = pd.DataFrame(age_list, columns=['uid', 'history', 'profile'])
return profile_df
def train_val_test_split(user_history):
if not user_history:
return
train_history = {}
val_history = {}
test_history = {}
for key, history in tqdm(user_history.items()):
train_history[key] = history[:-2]
val_history[key] = history[-2:-1]
test_history[key] = history[-1:]
return train_history, val_history, test_history
def val_test_split(user_history):
if not user_history:
return
val_history = {}
test_history = {}
val_len = int(len(user_history) / 5)
test_len = int(len(user_history))
i = 0
for key, history in tqdm(user_history.items()):
if i < val_len:
val_history[key] = history
i += 1
elif i >= val_len and i < test_len:
test_history[key] = history
i += 1
return val_history, test_history
class item_reset_df(object):
def __init__(self):
print("=" * 10, "Initialize Reset DataFrame Object", "=" * 10)
self.item_enc = LabelEncoder()
def fit_transform(self, df):
print("=" * 10, "Resetting item ids in DataFrame", "=" * 10)
df['item_id'] = self.item_enc.fit_transform(df['item_id']) + 1
return df
def inverse_transform(self, df):
df['item_id'] = self.item_enc.inverse_transform(df['item_id']) - 1
return df
class reset_df(object):
def __init__(self):
print("=" * 10, "Initialize Reset DataFrame Object", "=" * 10)
self.item_enc = LabelEncoder()
self.user_enc = LabelEncoder()
def fit_transform(self, df):
print("=" * 10, "Resetting user ids and item ids in DataFrame", "=" * 10)
df['item_id'] = self.item_enc.fit_transform(df['item_id']) + 1
df['user_id'] = self.user_enc.fit_transform(df['user_id']) + 1
return df
def inverse_transform(self, df):
df['item_id'] = self.item_enc.inverse_transform(df['item_id']) - 1
df['user_id'] = self.user_enc.inverse_transform(df['user_id']) - 1
return df
class cold_reset_df(object):
def __init__(self):
print("=" * 10, "Initialize Reset DataFrame Object", "=" * 10)
self.item_enc1 = LabelEncoder()
self.item_enc2 = LabelEncoder()
self.user_enc = LabelEncoder()
def fit_transform(self, df1, df2):
print("=" * 10, "Resetting user ids and item ids in DataFrame", "=" * 10)
df = df1['user_id'].append(df2['user_id'])
df = self.user_enc.fit_transform(df) + 1
df1['item_id'] = self.item_enc1.fit_transform(df1['item_id']) + 1
df1['user_id'] = df[:len(df1)]
df2['item_id'] = self.item_enc2.fit_transform(df2['item_id']) + 1
df2['user_id'] = df[len(df1):]
return df1, df2
def inverse_transform(self, df):
df['item_id'] = self.item_enc.inverse_transform(df['item_id']) - 1
df['user_id'] = self.user_enc.inverse_transform(df['user_id']) - 1
return df
class mtlDataSet(data_utils.Dataset):
def __init__(self, data, args):
self.feature = data[0]
self.args = args
if args.mtl_task_num == 2:
self.label1 = data[1]
self.label2 = data[2]
else:
self.label = data[1]
def __getitem__(self, index):
feature = self.feature[index]
if self.args.mtl_task_num == 2:
label1 = self.label1[index]
label2 = self.label2[index]
return feature, label1, label2
else:
label = self.label[index]
return feature, label
def __len__(self):
return len(self.feature)
class ProfileDataset(data_utils.Dataset):
def __init__(self, x, y, max_len, mask_token):
self.seqs = x
self.targets = y
self.max_len = max_len
self.mask_token = mask_token
def __len__(self):
return len(self.seqs)
def __getitem__(self, index):
seq = self.seqs[index]
target = self.targets[index]
seq = seq + [self.mask_token]
seq = seq[-self.max_len:]
seq_len = len(seq)
seq_mask_len = self.max_len - seq_len
seq = [0] * seq_mask_len + seq
return torch.LongTensor(seq), torch.LongTensor([target])
class BuildTrainDataset(data_utils.Dataset):
def __init__(self, u2seq, max_len, mask_prob, mask_token, num_items, rng):#
self.u2seq = u2seq
self.users = sorted(self.u2seq.keys())
self.max_len = max_len
self.mask_prob = mask_prob
self.mask_token = mask_token
self.num_items = num_items
self.rng = rng
def __len__(self):
return len(self.users)
def __getitem__(self, index):
user = self.users[index]
seq = self._getseq(user)
tokens = seq[:-1]
labels = seq[1:]
#
tokens = tokens[-self.max_len:]
labels = labels[-self.max_len:]
x_len = len(tokens)
y_len = len(labels)
x_mask_len = self.max_len - x_len
y_mask_len = self.max_len - y_len
tokens = [0] * x_mask_len + tokens
labels = [0] * y_mask_len + labels
return torch.LongTensor(tokens), torch.LongTensor(labels)
def _getseq(self, user):
return self.u2seq[user]
class ColdDataset(data_utils.Dataset):
def __init__(self, x, y, max_len, mask_token):
self.seqs = x
self.targets = y
self.max_len = max_len
self.mask_token = mask_token
def __len__(self):
return len(self.seqs)
def __getitem__(self, index):
seq = self.seqs[index]
target = self.targets[index]
seq = seq[-self.max_len:]
seq_len = len(seq)
seq_mask_len = self.max_len - seq_len
seq = [0] * seq_mask_len + seq
return torch.LongTensor(seq), torch.LongTensor([target])
class ColdEvalDataset(data_utils.Dataset):
def __init__(self, x, y, max_len, mask_token, num_item):
self.seqs = x
self.targets = y
self.max_len = max_len
self.mask_token = mask_token
self.num_item = num_item + 1
def __len__(self):
return len(self.seqs)
def __getitem__(self, index):
seq = self.seqs[index]
target = self.targets[index]
labels = [0] * self.num_item
labels[target] = 1
seq = seq[-self.max_len:]
seq_len = len(seq)
seq_mask_len = self.max_len - seq_len
seq = [self.mask_token] * seq_mask_len + seq
return torch.LongTensor(seq), torch.LongTensor(labels)
class pos_neg_TrainDataset(data_utils.Dataset):
def __init__(self, u2seq, max_len, mask_token, num_items):
self.u2seq = u2seq
self.users = sorted(self.u2seq.keys())
self.max_len = max_len
self.mask_token = mask_token
self.num_items = num_items
def __len__(self):
return len(self.users)
def __getitem__(self, index):
user = self.users[index]
seq = self._getseq(user)
tokens = seq[:-1]
pos = seq[1:]
tokens = tokens[-self.max_len:]
pos = pos[-self.max_len:]
seen = set(tokens)
seen.update(pos)
neg = []
for _ in range(len(pos)):
item = np.random.choice(self.num_items + 1) #
while item in seen or item in neg:
item = np.random.choice(self.num_items + 1) #
neg.append(item)
neg = neg[-self.max_len:]
x_len = len(tokens)
p_len = len(pos)
n_len = len(neg)
x_mask_len = self.max_len - x_len
p_mask_len = self.max_len - p_len
n_mask_len = self.max_len - n_len
tokens = [self.mask_token] * x_mask_len + tokens
pos = [self.mask_token] * p_mask_len + pos
neg = [self.mask_token] * n_mask_len + neg
return torch.LongTensor(tokens), torch.LongTensor(pos), torch.LongTensor(neg)#, torch.LongTensor([x_len]), torch.LongTensor([user])
def _getseq(self, user):
return self.u2seq[user]
class CFData(data_utils.Dataset):
def __init__(self, features,
num_item, train_dict, num_ng=0, is_training=None):
""" Note that the labels are only useful when training, we thus
add them in the ng_sample() function.