forked from onnx/onnx-tensorrt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgetSupportedAPITest.cpp
154 lines (129 loc) · 5.36 KB
/
getSupportedAPITest.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
/*
* SPDX-License-Identifier: Apache-2.0
*/
#include <iostream>
#include <fstream>
#include <unistd.h> // For ::getopt
#include <string>
#include "NvOnnxParser.h"
#include "NvInferPlugin.h"
#include "onnx_utils.hpp"
#include "common.hpp"
using std::cout;
using std::cerr;
using std::endl;
void print_usage() {
cout << "This program will determine whether or not an ONNX model is compatible with TensorRT. "
<< "If it isn't, a list of supported subgraphs and unsupported operations will be printed." << endl;
cout << "Usage: getSupportedAPITest -m onnx_model.pb" << endl;
cout << "Optional argument: -e TRT_engine" << endl;
}
void printSubGraphs(SubGraphCollection_t& subGraphs, ::ONNX_NAMESPACE::ModelProto onnx_model)
{
if (subGraphs.size() != 1)
{
cout << "The model contains unsupported Nodes. It has been partitioned to a set of supported subGraphs." << endl;
cout << "There are "<< subGraphs.size() << " supported subGraphs: " << endl;
cout << "NOTE: Due to some limitations with the parser, the support of specific subgraphs may not have been determined."
<< " Please refer to the printed subgraphs to see if they are truly supported or not." << endl;
}
else
{
cout << "The model is fully supported by TensorRT. Printing the parsed graph:" << endl;
}
for (auto subGraph: subGraphs)
{
cout << "\t{";
for (auto idx: subGraph.first) cout << "\t" << idx << "," <<onnx_model.graph().node(idx).op_type();
cout << "\t}\t - ";
if (subGraph.second)
{
cout << "Fully supported" << endl;
}
else
{
cout << "UNKNOWN whether this is fully supported." << endl;
}
}
}
int main(int argc, char* argv[]) {
GOOGLE_PROTOBUF_VERIFY_VERSION;
std::string engine_filename;
std::string text_filename;
std::string full_text_filename;
std::string onnx_filename;
int c;
size_t max_batch_size = 32;
size_t max_workspace_size = 1 << 30;
int verbosity = (int)nvinfer1::ILogger::Severity::kWARNING;
while ((c = getopt (argc, argv, "m:e:")) != -1)
{
switch(c)
{
case 'm':
onnx_filename = optarg;
break;
case 'e':
engine_filename = optarg;
break;
}
}
if (onnx_filename.empty())
{
print_usage();
return -1;
}
common::TRT_Logger trt_logger((nvinfer1::ILogger::Severity)verbosity);
auto trt_builder = common::infer_object(nvinfer1::createInferBuilder(trt_logger));
auto trt_network = common::infer_object(trt_builder->createNetworkV2(1U << static_cast<uint32_t>(nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH)));
auto trt_parser = common::infer_object(nvonnxparser::createParser(*trt_network, trt_logger));
initLibNvInferPlugins(&trt_logger, "");
cout << "Parsing model: " << onnx_filename << endl;
std::ifstream onnx_file(onnx_filename.c_str(),
std::ios::binary | std::ios::ate);
std::streamsize file_size = onnx_file.tellg();
onnx_file.seekg(0, std::ios::beg);
std::vector<char> onnx_buf(file_size);
if( !onnx_file.read(onnx_buf.data(), onnx_buf.size()) ) {
cerr << "ERROR: Failed to read from file " << onnx_filename << endl;
return -1;
}
::ONNX_NAMESPACE::ModelProto onnx_model;
if (!common::ParseFromFile_WAR(&onnx_model, onnx_filename.c_str()))
{
cout << "Failure while parsing ONNX file" << endl;
return -1;
}
SubGraphCollection_t SubGraphCollection;
// supportsModel() parses the graph and returns a list of supported subgraphs.
if (!trt_parser->supportsModel(onnx_buf.data(), onnx_buf.size(), SubGraphCollection))
{
cout << "Model cannot be fully parsed by TensorRT!" << endl;
printSubGraphs(SubGraphCollection, onnx_model);
return -1;
}
printSubGraphs(SubGraphCollection, onnx_model);
// If -e was specified, create and save the TensorRT engine to disk.
// Note we do not call trt_parser->parse() here since it's already done above in parser->supportsModel()
if( !engine_filename.empty() ) {
trt_builder->setMaxBatchSize(max_batch_size);
auto builder_config = common::infer_object(trt_builder->createBuilderConfig());
builder_config->setMaxWorkspaceSize(max_workspace_size);
cout << "input name: " << trt_network->getInput(0)->getName() << endl;
cout << "output name: " << trt_network->getOutput(0)->getName() << endl;
cout << "num layers: " << trt_network->getNbLayers() << endl;
cout << "outputs: " << trt_network->getNbOutputs() << endl;
auto trt_engine = common::infer_object(trt_builder->buildEngineWithConfig(*trt_network.get(), *builder_config.get()));
if( verbosity >= (int)nvinfer1::ILogger::Severity::kWARNING ) {
cout << "Writing TensorRT engine to " << engine_filename << endl;
}
auto engine_plan = common::infer_object(trt_engine->serialize());
std::ofstream engine_file(engine_filename.c_str(), std::ios::binary);
engine_file.write(reinterpret_cast<const char*>(engine_plan->data()), engine_plan->size());
engine_file.close();
}
if( verbosity >= (int)nvinfer1::ILogger::Severity::kWARNING ) {
cout << "All done" << endl;
}
return 0;
}