-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathbsm.py
42 lines (32 loc) · 1.23 KB
/
bsm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import math
class BSM():
def pdf(self, x):
return math.exp(-x**2/2) / math.sqrt(2*math.pi)
def cdf(self, x):
return (1 + math.erf(x / math.sqrt(2))) / 2
def d1(self, S, K, V, T):
return (math.log(S / float(K)) + (V**2 / 2) * T) / (V * math.sqrt(T))
def d2(self, S, K, V, T):
return self.d1(S, K, V, T) - (V * math.sqrt(T))
def theo(self, S, K, V, T, dT):
if dT == 'C':
return S * self.cdf(self.d1(S, K, V, T)) - K * self.cdf(self.d2(S, K, V, T))
else:
return K * self.cdf(-self.d2(S, K, V, T)) - S * self.cdf(-self.d1(S, K, V, T))
def delta(self, S, K, V, T, dT):
if dT == 'C':
delta = self.cdf(self.d1(S, K, V, T))
elif dT == 'P':
delta = self.cdf(self.d1(S, K, V, T)) - 1
else:
delta = 1
return delta
def vega(self, S, K, V, T):
vega = (S * math.sqrt(T) * self.pdf(self.d1(S, K, V, T))) / 100
return vega
def theta(self, S, K, V, T):
theta = -((S * V * self.pdf(self.d1(S, K, V, T))) / (2 * math.sqrt(T))) / 365
return theta
def gamma(self, S, K, V, T):
gamma = self.pdf(self.d1(S, K, V, T))/(S * V * math.sqrt(T))
return gamma