-
Notifications
You must be signed in to change notification settings - Fork 229
/
Copy pathcompetition_predict.py
320 lines (230 loc) · 11.3 KB
/
competition_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import os
import json
import torch
from collections import defaultdict
from transformers import BertTokenizer
from src.utils.model_utils import CRFModel, SpanModel, EnsembleCRFModel, EnsembleSpanModel
from src.utils.evaluator import crf_decode, span_decode
from src.utils.functions_utils import load_model_and_parallel, ensemble_vote
from src.preprocess.processor import cut_sent, fine_grade_tokenize
MID_DATA_DIR = "./data/mid_data"
RAW_DATA_DIR = "./data/raw_data_random"
SUBMIT_DIR = "./result"
GPU_IDS = "0"
LAMBDA = 0.3
THRESHOLD = 0.9
MAX_SEQ_LEN = 512
TASK_TYPE = "crf" # choose crf or span
VOTE = True # choose True or False
VERSION = "mixed" # choose single or ensemble or mixed ; if mixed VOTE and TAST_TYPE is useless.
# single_predict
BERT_TYPE = "uer_large" # roberta_wwm / ernie_1 / uer_large
BERT_DIR = f"./bert/torch_{BERT_TYPE}"
with open('./best_ckpt_path.txt', 'r', encoding='utf-8') as f:
CKPT_PATH = f.read().strip()
# ensemble_predict
BERT_DIR_LIST = ["./bert/torch_uer_large", "./bert/torch_roberta_wwm"]
with open('./best_ckpt_path.txt', 'r', encoding='utf-8') as f:
ENSEMBLE_DIR_LIST = f.readlines()
print('ENSEMBLE_DIR_LIST:{}'.format(ENSEMBLE_DIR_LIST))
# mixed_predict
MIX_BERT_DIR = "./bert/torch_uer_large"
with open('./best_ckpt_path.txt', 'r', encoding='utf-8') as f:
MIX_DIR_LIST = f.readlines()
print('MIX_DIR_LIST:{}'.format(MIX_DIR_LIST))
def prepare_info():
info_dict = {}
with open(os.path.join(MID_DATA_DIR, f'{TASK_TYPE}_ent2id.json'), encoding='utf-8') as f:
ent2id = json.load(f)
with open(os.path.join(RAW_DATA_DIR, 'test.json'), encoding='utf-8') as f:
info_dict['examples'] = json.load(f)
info_dict['id2ent'] = {ent2id[key]: key for key in ent2id.keys()}
info_dict['tokenizer'] = BertTokenizer(os.path.join(BERT_DIR, 'vocab.txt'))
return info_dict
def mixed_prepare_info(mixed='crf'):
info_dict = {}
with open(os.path.join(MID_DATA_DIR, f'{mixed}_ent2id.json'), encoding='utf-8') as f:
ent2id = json.load(f)
with open(os.path.join(RAW_DATA_DIR, 'test.json'), encoding='utf-8') as f:
info_dict['examples'] = json.load(f)
info_dict['id2ent'] = {ent2id[key]: key for key in ent2id.keys()}
info_dict['tokenizer'] = BertTokenizer(os.path.join(BERT_DIR, 'vocab.txt'))
return info_dict
def base_predict(model, device, info_dict, ensemble=False, mixed=''):
labels = defaultdict(list)
tokenizer = info_dict['tokenizer']
id2ent = info_dict['id2ent']
with torch.no_grad():
for _ex in info_dict['examples']:
ex_idx = _ex['id']
raw_text = _ex['text']
if not len(raw_text):
labels[ex_idx] = []
print('{}为空'.format(ex_idx))
continue
sentences = cut_sent(raw_text, MAX_SEQ_LEN)
start_index = 0
for sent in sentences:
sent_tokens = fine_grade_tokenize(sent, tokenizer)
encode_dict = tokenizer.encode_plus(text=sent_tokens,
max_length=MAX_SEQ_LEN,
is_pretokenized=True,
pad_to_max_length=False,
return_tensors='pt',
return_token_type_ids=True,
return_attention_mask=True)
model_inputs = {'token_ids': encode_dict['input_ids'],
'attention_masks': encode_dict['attention_mask'],
'token_type_ids': encode_dict['token_type_ids']}
for key in model_inputs:
model_inputs[key] = model_inputs[key].to(device)
if ensemble:
if TASK_TYPE == 'crf':
if VOTE:
decode_entities = model.vote_entities(model_inputs, sent, id2ent, THRESHOLD)
else:
pred_tokens = model.predict(model_inputs)[0]
decode_entities = crf_decode(pred_tokens, sent, id2ent)
else:
if VOTE:
decode_entities = model.vote_entities(model_inputs, sent, id2ent, THRESHOLD)
else:
start_logits, end_logits = model.predict(model_inputs)
start_logits = start_logits[0].cpu().numpy()[1:1 + len(sent)]
end_logits = end_logits[0].cpu().numpy()[1:1 + len(sent)]
decode_entities = span_decode(start_logits, end_logits, sent, id2ent)
else:
if mixed:
if mixed == 'crf':
pred_tokens = model(**model_inputs)[0][0]
decode_entities = crf_decode(pred_tokens, sent, id2ent)
else:
start_logits, end_logits = model(**model_inputs)
start_logits = start_logits[0].cpu().numpy()[1:1 + len(sent)]
end_logits = end_logits[0].cpu().numpy()[1:1 + len(sent)]
decode_entities = span_decode(start_logits, end_logits, sent, id2ent)
else:
if TASK_TYPE == 'crf':
pred_tokens = model(**model_inputs)[0][0]
decode_entities = crf_decode(pred_tokens, sent, id2ent)
else:
start_logits, end_logits = model(**model_inputs)
start_logits = start_logits[0].cpu().numpy()[1:1+len(sent)]
end_logits = end_logits[0].cpu().numpy()[1:1+len(sent)]
decode_entities = span_decode(start_logits, end_logits, sent, id2ent)
for _ent_type in decode_entities:
for _ent in decode_entities[_ent_type]:
tmp_start = _ent[1] + start_index
tmp_end = tmp_start + len(_ent[0])
assert raw_text[tmp_start: tmp_end] == _ent[0]
labels[ex_idx].append((_ent_type, tmp_start, tmp_end, _ent[0]))
start_index += len(sent)
if not len(labels[ex_idx]):
labels[ex_idx] = []
return labels
def single_predict():
save_dir = os.path.join(SUBMIT_DIR, VERSION)
if not os.path.exists(save_dir):
os.makedirs(save_dir, exist_ok=True)
info_dict = prepare_info()
if TASK_TYPE == 'crf':
model = CRFModel(bert_dir=BERT_DIR, num_tags=len(info_dict['id2ent']))
else:
model = SpanModel(bert_dir=BERT_DIR, num_tags=len(info_dict['id2ent'])+1)
print(f'Load model from {CKPT_PATH}')
model, device = load_model_and_parallel(model, GPU_IDS, CKPT_PATH)
model.eval()
labels = base_predict(model, device, info_dict)
for key in labels.keys():
with open(os.path.join(save_dir, f'{key}.ann'), 'w', encoding='utf-8') as f:
if not len(labels[key]):
print(key)
f.write("")
else:
for idx, _label in enumerate(labels[key]):
f.write(f'T{idx + 1}\t{_label[0]} {_label[1]} {_label[2]}\t{_label[3]}\n')
def ensemble_predict():
save_dir = os.path.join(SUBMIT_DIR, VERSION)
if not os.path.exists(save_dir):
os.makedirs(save_dir, exist_ok=True)
info_dict = prepare_info()
model_path_list = [x.strip() for x in ENSEMBLE_DIR_LIST]
print('model_path_list:{}'.format(model_path_list))
device = torch.device(f'cuda:{GPU_IDS[0]}')
if TASK_TYPE == 'crf':
model = EnsembleCRFModel(model_path_list=model_path_list,
bert_dir_list=BERT_DIR_LIST,
num_tags=len(info_dict['id2ent']),
device=device,
lamb=LAMBDA)
else:
model = EnsembleSpanModel(model_path_list=model_path_list,
bert_dir_list=BERT_DIR_LIST,
num_tags=len(info_dict['id2ent'])+1,
device=device)
labels = base_predict(model, device, info_dict, ensemble=True)
for key in labels.keys():
with open(os.path.join(save_dir, f'{key}.ann'), 'w', encoding='utf-8') as f:
if not len(labels[key]):
print(key)
f.write("")
else:
for idx, _label in enumerate(labels[key]):
f.write(f'T{idx + 1}\t{_label[0]} {_label[1]} {_label[2]}\t{_label[3]}\n')
def mixed_predict():
save_dir = os.path.join(SUBMIT_DIR, VERSION)
if not os.path.exists(save_dir):
os.makedirs(save_dir, exist_ok=True)
model_path_list = [x.strip() for x in MIX_DIR_LIST]
print('model_path_list:{}'.format(model_path_list))
all_labels = []
for i, model_path in enumerate(model_path_list):
if i <= 4:
info_dict = mixed_prepare_info(mixed='span')
model = SpanModel(bert_dir=MIX_BERT_DIR, num_tags=len(info_dict['id2ent']) + 1)
print(f'Load model from {model_path}')
model, device = load_model_and_parallel(model, GPU_IDS, model_path)
model.eval()
labels = base_predict(model, device, info_dict, ensemble=False, mixed='span')
else:
info_dict = mixed_prepare_info(mixed='crf')
model = CRFModel(bert_dir=MIX_BERT_DIR, num_tags=len(info_dict['id2ent']))
print(f'Load model from {model_path}')
model, device = load_model_and_parallel(model, GPU_IDS, model_path)
model.eval()
labels = base_predict(model, device, info_dict, ensemble=False, mixed='crf')
all_labels.append(labels)
labels = ensemble_vote(all_labels, THRESHOLD)
# for key in labels.keys():
for key in range(1500, 1997):
with open(os.path.join(save_dir, f'{key}.ann'), 'w', encoding='utf-8') as f:
if not len(labels[key]):
print(key)
f.write("")
else:
for idx, _label in enumerate(labels[key]):
f.write(f'T{idx + 1}\t{_label[0]} {_label[1]} {_label[2]}\t{_label[3]}\n')
if __name__ == '__main__':
assert VERSION in ['single', 'ensemble', 'mixed'], 'VERSION mismatch'
if VERSION == 'single':
single_predict()
elif VERSION == 'ensemble':
if VOTE:
print("————————开始投票:————————")
ensemble_predict()
elif VERSION == 'mixed':
print("————————开始混合投票:————————")
mixed_predict()
# 压缩result.zip
import zipfile
def zip_file(src_dir):
zip_name = src_dir + '.zip'
z = zipfile.ZipFile(zip_name, 'w', zipfile.ZIP_DEFLATED)
for dirpath, dirnames, filenames in os.walk(src_dir):
fpath = dirpath.replace(src_dir, '')
fpath = fpath and fpath + os.sep or ''
for filename in filenames:
z.write(os.path.join(dirpath, filename), fpath + filename)
print('==压缩成功==')
z.close()
zip_file('./result')