forked from PaddlePaddle/ERNIE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune_mrc.py
247 lines (212 loc) · 9.01 KB
/
finetune_mrc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
from __future__ import absolute_import
from __future__ import print_function
from __future__ import unicode_literals
import os
import re
import time
import logging
import json
from pathlib import Path
from random import random
from tqdm import tqdm
from functools import reduce, partial
import pickle
import argparse
from functools import partial
from io import open
import numpy as np
import logging
import paddle as P
from propeller import log
import propeller.paddle as propeller
from ernie.modeling_ernie import ErnieModel, ErnieModelForQuestionAnswering
from ernie.tokenizing_ernie import ErnieTokenizer, ErnieTinyTokenizer
#from ernie.optimization import AdamW, LinearDecay
from demo.mrc import mrc_reader
from demo.mrc import mrc_metrics
from demo.utils import create_if_not_exists, get_warmup_and_linear_decay
log.setLevel(logging.DEBUG)
logging.getLogger().setLevel(logging.DEBUG)
def evaluate(model, ds, all_examples, all_features, tokenizer, args):
dev_file = json.loads(open(args.dev_file, encoding='utf8').read())
with P.no_grad():
log.debug('start eval')
model.eval()
all_res = []
for step, (uids, token_ids, token_type_ids, _, __) in enumerate(
P.io.DataLoader(
ds, places=P.CUDAPlace(env.dev_id), batch_size=None)):
_, start_logits, end_logits = model(token_ids, token_type_ids)
res = [
mrc_metrics.RawResult(
unique_id=u, start_logits=s, end_logits=e)
for u, s, e in zip(uids.numpy(),
start_logits.numpy(), end_logits.numpy())
]
all_res += res
open('all_res', 'wb').write(pickle.dumps(all_res))
all_pred, all_nbests = mrc_metrics.make_results(
tokenizer,
all_examples,
all_features,
all_res,
n_best_size=args.n_best_size,
max_answer_length=args.max_answer_length,
do_lower_case=tokenizer.lower)
f1, em, _, __ = mrc_metrics.evaluate(dev_file, all_pred)
model.train()
log.debug('done eval')
return f1, em
def train(model, train_dataset, dev_dataset, dev_examples, dev_features,
tokenizer, args):
model = P.DataParallel(model)
max_steps = len(train_features) * args.epoch // args.bsz
g_clip = P.nn.ClipGradByGlobalNorm(1.0) #experimental
lr_scheduler = P.optimizer.lr.LambdaDecay(
args.lr,
get_warmup_and_linear_decay(max_steps,
int(args.warmup_proportion * max_steps)))
opt = P.optimizer.AdamW(
lr_scheduler,
parameters=model.parameters(),
weight_decay=args.wd,
grad_clip=g_clip)
train_dataset = train_dataset \
.cache_shuffle_shard(env.nranks, env.dev_id, drop_last=True) \
.padded_batch(args.bsz)
log.debug('init training with args: %s' % repr(args))
scaler = P.amp.GradScaler(enable=args.use_amp)
create_if_not_exists(args.save_dir)
with P.amp.auto_cast(enable=args.use_amp):
for step, (_, token_ids, token_type_ids, start_pos,
end_pos) in enumerate(
P.io.DataLoader(
train_dataset,
places=P.CUDAPlace(env.dev_id),
batch_size=None)):
loss, _, __ = model(
token_ids,
token_type_ids,
start_pos=start_pos,
end_pos=end_pos)
loss = scaler.scale(loss)
loss.backward()
scaler.minimize(opt, loss)
model.clear_gradients()
lr_scheduler.step()
if env.dev_id == 0 and step % 10 == 0:
_lr = lr_scheduler.get_lr()
if args.use_amp:
_l = (loss / scaler._scale).numpy()
msg = '[rank-%d][step-%d] train loss %.5f lr %.3e scaling %.3e' % (
env.dev_id, step, _l, _lr, scaler._scale.numpy())
else:
_l = loss.numpy()
msg = '[rank-%d][step-%d] train loss %.5f lr %.3e' % (
env.dev_id, step, _l, _lr)
log.debug(msg)
if env.dev_id == 0 and step % 100 == 0:
f1, em = evaluate(model, dev_dataset, dev_examples,
dev_features, tokenizer, args)
log.debug('[step %d] eval result: f1 %.5f em %.5f' %
(step, f1, em))
if env.dev_id == 0 and args.save_dir is not None:
P.save(model.state_dict(), args.save_dir / 'ckpt.bin')
if step > max_steps:
break
if __name__ == "__main__":
parser = argparse.ArgumentParser('MRC model with ERNIE')
parser.add_argument(
'--from_pretrained',
type=Path,
required=True,
help='pretrained model directory or tag')
parser.add_argument(
'--max_seqlen',
type=int,
default=512,
help='max sentence length, should not greater than 512')
parser.add_argument('--bsz', type=int, default=8, help='batchsize')
parser.add_argument('--epoch', type=int, default=2, help='epoch')
parser.add_argument(
'--train_file',
type=str,
required=True,
help='data directory includes train / develop data')
parser.add_argument(
'--dev_file',
type=str,
required=True,
help='data directory includes train / develop data')
parser.add_argument('--warmup_proportion', type=float, default=0.1)
parser.add_argument('--lr', type=float, default=3e-5, help='learning rate')
parser.add_argument(
'--save_dir', type=Path, required=True, help='model output directory')
parser.add_argument(
'--n_best_size', type=int, default=20, help='nbest prediction to keep')
parser.add_argument(
'--max_answer_length', type=int, default=100, help='max answer span')
parser.add_argument(
'--wd',
type=float,
default=0.01,
help='weight decay, aka L2 regularizer')
parser.add_argument(
'--use_amp',
action='store_true',
help='only activate AMP(auto mixed precision accelatoin) on TensorCore compatible devices'
)
args = parser.parse_args()
env = P.distributed.ParallelEnv()
P.distributed.init_parallel_env()
tokenizer = ErnieTokenizer.from_pretrained(args.from_pretrained)
if not os.path.exists(args.train_file):
raise RuntimeError('input data not found at %s' % args.train_file)
if not os.path.exists(args.dev_file):
raise RuntimeError('input data not found at %s' % args.dev_file)
log.info('making train/dev data...')
train_examples = mrc_reader.read_files(args.train_file, is_training=True)
train_features = mrc_reader.convert_example_to_features(
train_examples, args.max_seqlen, tokenizer, is_training=True)
dev_examples = mrc_reader.read_files(args.dev_file, is_training=False)
dev_features = mrc_reader.convert_example_to_features(
dev_examples, args.max_seqlen, tokenizer, is_training=False)
log.info('train examples: %d, features: %d' %
(len(train_examples), len(train_features)))
def map_fn(unique_id, example_index, doc_span_index, tokens,
token_to_orig_map, token_is_max_context, token_ids,
position_ids, text_type_ids, start_position, end_position):
if start_position is None:
start_position = 0
if end_position is None:
end_position = 0
return np.array(unique_id), np.array(token_ids), np.array(
text_type_ids), np.array(start_position), np.array(end_position)
train_dataset = propeller.data.Dataset.from_list(train_features).map(
map_fn)
dev_dataset = propeller.data.Dataset.from_list(dev_features).map(
map_fn).padded_batch(args.bsz)
model = ErnieModelForQuestionAnswering.from_pretrained(
args.from_pretrained, name='')
train(model, train_dataset, dev_dataset, dev_examples, dev_features,
tokenizer, args)
if env.dev_id == 0:
f1, em = evaluate(model, dev_dataset, dev_examples, dev_features,
tokenizer, args)
log.debug('final eval result: f1 %.5f em %.5f' % (f1, em))
if env.dev_id == 0 and args.save_dir is not None:
P.save(model.state_dict(), args.save_dir / 'ckpt.bin')