forked from PaddlePaddle/ERNIE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune_ner.py
258 lines (225 loc) · 9.9 KB
/
finetune_ner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
import time
import logging
import six
import json
from random import random
from tqdm import tqdm
from collections import OrderedDict
from functools import reduce, partial
from pathlib import Path
from visualdl import LogWriter
import numpy as np
import multiprocessing
import pickle
import logging
from sklearn.metrics import f1_score
import paddle as P
from propeller import log
import propeller.paddle as propeller
log.setLevel(logging.DEBUG)
logging.getLogger().setLevel(logging.DEBUG)
from demo.utils import create_if_not_exists, get_warmup_and_linear_decay
from ernie.modeling_ernie import ErnieModel, ErnieModelForSequenceClassification, ErnieModelForTokenClassification
from ernie.tokenizing_ernie import ErnieTokenizer
#from ernie.optimization import AdamW, LinearDecay
parser = propeller.ArgumentParser('NER model with ERNIE')
parser.add_argument('--max_seqlen', type=int, default=256)
parser.add_argument('--bsz', type=int, default=32)
parser.add_argument('--data_dir', type=str, required=True)
parser.add_argument('--epoch', type=int, default=6)
parser.add_argument(
'--warmup_proportion',
type=float,
default=0.1,
help='if use_lr_decay is set, '
'learning rate will raise to `lr` at `warmup_proportion` * `max_steps` and decay to 0. at `max_steps`'
)
parser.add_argument(
'--max_steps',
type=int,
required=True,
help='max_train_steps, set this to EPOCH * NUM_SAMPLES / BATCH_SIZE, used in learning rate scheduler'
)
parser.add_argument(
'--use_amp',
action='store_true',
help='only activate AMP(auto mixed precision accelatoin) on TensorCore compatible devices'
)
parser.add_argument('--from_pretrained', type=Path, required=True)
parser.add_argument('--lr', type=float, default=5e-5, help='learning rate')
parser.add_argument(
'--save_dir', type=Path, required=True, help='model output directory')
parser.add_argument(
'--wd', type=float, default=0.01, help='weight decay, aka L2 regularizer')
args = parser.parse_args()
tokenizer = ErnieTokenizer.from_pretrained(args.from_pretrained)
def tokenizer_func(inputs):
ret = inputs.split(b'\2')
tokens, orig_pos = [], []
for i, r in enumerate(ret):
t = tokenizer.tokenize(r)
for tt in t:
tokens.append(tt)
orig_pos.append(i)
assert len(tokens) == len(orig_pos)
return tokens + orig_pos
def tokenizer_func_for_label(inputs):
return inputs.split(b'\2')
feature_map = {
b"B-PER": 0,
b"I-PER": 1,
b"B-ORG": 2,
b"I-ORG": 3,
b"B-LOC": 4,
b"I-LOC": 5,
b"O": 6,
}
other_tag_id = feature_map[b'O']
feature_column = propeller.data.FeatureColumns([
propeller.data.TextColumn(
'text_a',
unk_id=tokenizer.unk_id,
vocab_dict=tokenizer.vocab,
tokenizer=tokenizer_func), propeller.data.TextColumn(
'label',
unk_id=other_tag_id,
vocab_dict=feature_map,
tokenizer=tokenizer_func_for_label, )
])
def before(seg, label):
seg, orig_pos = np.split(seg, 2)
aligned_label = label[orig_pos]
seg, _ = tokenizer.truncate(seg, [], args.max_seqlen)
aligned_label, _ = tokenizer.truncate(aligned_label, [], args.max_seqlen)
orig_pos, _ = tokenizer.truncate(orig_pos, [], args.max_seqlen)
sentence, segments = tokenizer.build_for_ernie(
seg
) #utils.data.build_1_pair(seg, max_seqlen=args.max_seqlen, cls_id=cls_id, sep_id=sep_id)
aligned_label = np.concatenate([[0], aligned_label, [0]], 0)
orig_pos = np.concatenate([[0], orig_pos, [0]])
assert len(aligned_label) == len(sentence) == len(orig_pos), (
len(aligned_label), len(sentence), len(orig_pos)) # alinged
return sentence, segments, aligned_label, label, orig_pos
train_ds = feature_column.build_dataset('train', data_dir=os.path.join(args.data_dir, 'train'), shuffle=True, repeat=False, use_gz=False) \
.map(before) \
.padded_batch(args.bsz, (0,0,-100, other_tag_id + 1, 0)) \
dev_ds = feature_column.build_dataset('dev', data_dir=os.path.join(args.data_dir, 'dev'), shuffle=False, repeat=False, use_gz=False) \
.map(before) \
.padded_batch(args.bsz, (0,0,-100, other_tag_id + 1,0)) \
test_ds = feature_column.build_dataset('test', data_dir=os.path.join(args.data_dir, 'test'), shuffle=False, repeat=False, use_gz=False) \
.map(before) \
.padded_batch(args.bsz, (0,0,-100, other_tag_id + 1,0)) \
def evaluate(model, dataset):
model.eval()
with P.no_grad():
chunkf1 = propeller.metrics.ChunkF1(None, None, None, len(feature_map))
for step, (ids, sids, aligned_label, label, orig_pos
) in enumerate(P.io.DataLoader(
dataset, batch_size=None)):
loss, logits = model(ids, sids)
#print('\n'.join(map(str, logits.numpy().tolist())))
assert orig_pos.shape[0] == logits.shape[0] == ids.shape[
0] == label.shape[0]
for pos, lo, la, id in zip(orig_pos.numpy(),
logits.numpy(),
label.numpy(), ids.numpy()):
_dic = OrderedDict()
assert len(pos) == len(lo) == len(id)
for _pos, _lo, _id in zip(pos, lo, id):
if _id > tokenizer.mask_id: # [MASK] is the largest special token
_dic.setdefault(_pos, []).append(_lo)
merged_lo = np.array(
[np.array(l).mean(0) for _, l in six.iteritems(_dic)])
merged_preds = np.argmax(merged_lo, -1)
la = la[np.where(la != (other_tag_id + 1))] #remove pad
if len(la) > len(merged_preds):
log.warn(
'accuracy loss due to truncation: label len:%d, truncate to %d'
% (len(la), len(merged_preds)))
merged_preds = np.pad(merged_preds,
[0, len(la) - len(merged_preds)],
mode='constant',
constant_values=7)
else:
assert len(la) == len(
merged_preds
), 'expect label == prediction, got %d vs %d' % (
la.shape, merged_preds.shape)
chunkf1.update((merged_preds, la, np.array(len(la))))
#f1 = f1_score(np.concatenate(all_label), np.concatenate(all_pred), average='macro')
f1 = chunkf1.eval()
model.train()
return f1
model = ErnieModelForTokenClassification.from_pretrained(
args.from_pretrained,
num_labels=len(feature_map),
name='',
has_pooler=False)
g_clip = P.nn.ClipGradByGlobalNorm(1.0) #experimental
param_name_to_exclue_from_weight_decay = re.compile(
r'.*layer_norm_scale|.*layer_norm_bias|.*b_0')
lr_scheduler = P.optimizer.lr.LambdaDecay(
args.lr,
get_warmup_and_linear_decay(args.max_steps,
int(args.warmup_proportion * args.max_steps)))
opt = P.optimizer.AdamW(
lr_scheduler,
parameters=model.parameters(),
weight_decay=args.wd,
apply_decay_param_fun=lambda n: not param_name_to_exclue_from_weight_decay.match(n),
grad_clip=g_clip)
scaler = P.amp.GradScaler(enable=args.use_amp)
with LogWriter(
logdir=str(create_if_not_exists(args.save_dir / 'vdl'))) as log_writer:
with P.amp.auto_cast(enable=args.use_amp):
for epoch in range(args.epoch):
for step, (
ids, sids, aligned_label, label, orig_pos
) in enumerate(P.io.DataLoader(
train_ds, batch_size=None)):
loss, logits = model(ids, sids, labels=aligned_label)
#loss, logits = model(ids, sids, labels=aligned_label, loss_weights=P.cast(ids != 0, 'float32'))
loss = scaler.scale(loss)
loss.backward()
scaler.minimize(opt, loss)
model.clear_gradients()
lr_scheduler.step()
if step % 10 == 0:
_lr = lr_scheduler.get_lr()
if args.use_amp:
_l = (loss / scaler._scale).numpy()
msg = '[step-%d] train loss %.5f lr %.3e scaling %.3e' % (
step, _l, _lr, scaler._scale.numpy())
else:
_l = loss.numpy()
msg = '[step-%d] train loss %.5f lr %.3e' % (step, _l,
_lr)
log.debug(msg)
log_writer.add_scalar('loss', _l, step=step)
log_writer.add_scalar('lr', _lr, step=step)
if step % 100 == 0:
f1 = evaluate(model, dev_ds)
log.debug('eval f1: %.5f' % f1)
log_writer.add_scalar('eval/f1', f1, step=step)
if args.save_dir is not None:
P.save(model.state_dict(), args.save_dir / 'ckpt.bin')
f1 = evaluate(model, dev_ds)
log.debug('final eval f1: %.5f' % f1)
log_writer.add_scalar('eval/f1', f1, step=step)
if args.save_dir is not None:
P.save(model.state_dict(), args.save_dir / 'ckpt.bin')