forked from da-spaceman/wzer_volume
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcalculate_daily_volume.R
174 lines (150 loc) · 8 KB
/
calculate_daily_volume.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# v1 contract -------------------------------------------------------------
##########This code is for the PancakeSwap v1 contract
library(readr)
data <- read_csv("export-address-token-0xb374394aee78d2f42926b9eb040e248ee2ea67ec.csv")
#convert to date in new var
data$UnixTimestamp<- as.POSIXct(data$UnixTimestamp, origin = "1970-01-01")
data$date <- as.Date(data$UnixTimestamp)
#get unique dates
volume_data <- data.frame(dates = unique(data$date))
#add columns to hold data
library("dplyr")
volume_data <- volume_data %>% mutate(wzer_sold = 0, wzer_sold_in_usdt = 0, usdt_sold = 0, wzer_bought = 0)
#for each date, get data frame of transactions
for (i in seq_len(nrow(volume_data))){
date_1 <- volume_data$dates[i]
date_txs <- data[data$date==date_1,]
#id unique transactions
txs <- unique(date_txs$Txhash)
for (j in 1:length(txs)) {
tx_hash <- txs[j]
txs_1 <- date_txs[date_txs$Txhash==tx_hash,]
#if there are 2 rows, it is a trade or LP add. if there are 4 rows LP is removed
if (nrow(txs_1)==2) {
if ((txs_1$To[1] == '0xb374394aee78d2f42926b9eb040e248ee2ea67ec') &
(txs_1$To[2] == '0xb374394aee78d2f42926b9eb040e248ee2ea67ec')){
} else {
index = which(txs_1$To == '0xb374394aee78d2f42926b9eb040e248ee2ea67ec')
#id token, and add amount to corresponding column/row in volume_data
if (txs_1$TokenSymbol[index]=='BUSD-T'){
volume_data$usdt_sold[i]<- volume_data$usdt_sold[i] + txs_1$Value[index]
if ((txs_1$From[1] == '0xb374394aee78d2f42926b9eb040e248ee2ea67ec') &
(txs_1$TokenSymbol[1]=='wZER')) {
volume_data$wzer_bought[i]<-volume_data$wzer_bought[i] + txs_1$Value[1]
}
if ((txs_1$From[2] == '0xb374394aee78d2f42926b9eb040e248ee2ea67ec') &
(txs_1$TokenSymbol[2]=='wZER')) {
volume_data$wzer_bought[i]<-volume_data$wzer_bought[i] + txs_1$Value[2]
}
}
if (txs_1$TokenSymbol[index]=='wZER'){
volume_data$wzer_sold[i]<- volume_data$wzer_sold[i] + txs_1$Value[index]
if ((txs_1$From[1] == '0xb374394aee78d2f42926b9eb040e248ee2ea67ec') &
(txs_1$TokenSymbol[1]=='BUSD-T')) {
volume_data$wzer_sold_in_usdt[i]<-volume_data$wzer_sold_in_usdt[i] + txs_1$Value[1]
}
if ((txs_1$From[2] == '0xb374394aee78d2f42926b9eb040e248ee2ea67ec') &
(txs_1$TokenSymbol[2]=='BUSD-T')) {
volume_data$wzer_sold_in_usdt[i]<-volume_data$wzer_sold_in_usdt[i] + txs_1$Value[2]
}
}
}
}
}
}
######add columns and calculations for total daily volume (in USD), total fees (in USD), and fees in each coin
volume_data <- volume_data %>% mutate(total_volume_usd = 0, total_volume_wzer = 0, tot_fees_usd = 0, fees_wzer= 0, fees_usdt = 0, wzer_price = 0)
volume_data$total_volume_usd <- volume_data$wzer_sold_in_usdt + volume_data$usdt_sold
volume_data$total_volume_wzer <- volume_data$wzer_sold + volume_data$wzer_bought
volume_data$tot_fees_usd <- volume_data$total_volume_usd * .0017
volume_data$fees_wzer <- volume_data$wzer_sold * .0017
volume_data$fees_usdt <- volume_data$usdt_sold * .0017
for (i in seq_len(nrow(volume_data))) {
if (is.nan(((volume_data$wzer_sold_in_usdt[i]/volume_data$wzer_sold[i])+(volume_data$usdt_sold[i]/volume_data$wzer_bought[i]))/2) == FALSE){
volume_data$wzer_price[i] <- ((volume_data$wzer_sold_in_usdt[i]/volume_data$wzer_sold[i])+(volume_data$usdt_sold[i]/volume_data$wzer_bought[i]))/2
} else if (is.nan(volume_data$wzer_sold_in_usdt[i]/volume_data$wzer_sold[i]) == FALSE) {
volume_data$wzer_price[i] <- volume_data$wzer_sold_in_usdt[i]/volume_data$wzer_sold[i]
} else if (is.nan(volume_data$usdt_sold[i]/volume_data$wzer_bought[i]) == FALSE) {
volume_data$wzer_price[i] <- volume_data$usdt_sold[i]/volume_data$wzer_bought[i]
} else {
volume_data$wzer_price[i] <- NA
}
}
volume_data_v1 <- volume_data
library(xlsx)
write.xlsx(volume_data_v1, "v1_volume_data.xlsx", row.names = FALSE)
# v2 contract -------------------------------------------------------------
##########This code is for the PancakeSwap v2 contract
library(readr)
data <- read_csv("export-address-token-0xad7b5e295a476c43f1fc3b7bb945030e9e9ffdc6.csv")
#convert to date in new var
data$UnixTimestamp<- as.POSIXct(data$UnixTimestamp, origin = "1970-01-01")
data$date <- as.Date(data$UnixTimestamp)
#get unique dates
volume_data <- data.frame(dates = unique(data$date))
#add columns to hold data
library("dplyr")
volume_data <- volume_data %>% mutate(wzer_sold = 0, wzer_sold_in_usdt = 0, usdt_sold = 0, wzer_bought = 0)
#for each date, get data frame of transactions
for (i in seq_len(nrow(volume_data))){
date_1 <- volume_data$dates[i]
date_txs <- data[data$date==date_1,]
#id unique transactions
txs <- unique(date_txs$Txhash)
for (j in 1:length(txs)) {
tx_hash <- txs[j]
txs_1 <- date_txs[date_txs$Txhash==tx_hash,]
#if there are 2 rows, it is a trade or LP add. if there are 4 rows LP is removed
if (nrow(txs_1)==2) {
if ((txs_1$To[1] == '0xad7b5e295a476c43f1fc3b7bb945030e9e9ffdc6') &
(txs_1$To[2] == '0xad7b5e295a476c43f1fc3b7bb945030e9e9ffdc6')){
} else {
index = which(txs_1$To == '0xad7b5e295a476c43f1fc3b7bb945030e9e9ffdc6')
#id token, and add amount to corresponding column/row in volume_data
if (txs_1$TokenSymbol[index]=='BUSD-T'){
volume_data$usdt_sold[i]<- volume_data$usdt_sold[i] + txs_1$Value[index]
if ((txs_1$From[1] == '0xad7b5e295a476c43f1fc3b7bb945030e9e9ffdc6') &
(txs_1$TokenSymbol[1]=='wZER')) {
volume_data$wzer_bought[i]<-volume_data$wzer_bought[i] + txs_1$Value[1]
}
if ((txs_1$From[2] == '0xad7b5e295a476c43f1fc3b7bb945030e9e9ffdc6') &
(txs_1$TokenSymbol[2]=='wZER')) {
volume_data$wzer_bought[i]<-volume_data$wzer_bought[i] + txs_1$Value[2]
}
}
if (txs_1$TokenSymbol[index]=='wZER'){
volume_data$wzer_sold[i]<- volume_data$wzer_sold[i] + txs_1$Value[index]
if ((txs_1$From[1] == '0xad7b5e295a476c43f1fc3b7bb945030e9e9ffdc6') &
(txs_1$TokenSymbol[1]=='BUSD-T')) {
volume_data$wzer_sold_in_usdt[i]<-volume_data$wzer_sold_in_usdt[i] + txs_1$Value[1]
}
if ((txs_1$From[2] == '0xad7b5e295a476c43f1fc3b7bb945030e9e9ffdc6') &
(txs_1$TokenSymbol[2]=='BUSD-T')) {
volume_data$wzer_sold_in_usdt[i]<-volume_data$wzer_sold_in_usdt[i] + txs_1$Value[2]
}
}
}
}
}
}
######add columns and calculations for total daily volume (in USD), total fees (in USD), and fees in each coin
volume_data <- volume_data %>% mutate(total_volume_usd = 0, total_volume_wzer = 0, tot_fees_usd = 0, fees_wzer= 0, fees_usdt = 0, wzer_price = 0)
volume_data$total_volume_usd <- volume_data$wzer_sold_in_usdt + volume_data$usdt_sold
volume_data$total_volume_wzer <- volume_data$wzer_sold + volume_data$wzer_bought
volume_data$tot_fees_usd <- volume_data$total_volume_usd * .0017
volume_data$fees_wzer <- volume_data$wzer_sold * .0017
volume_data$fees_usdt <- volume_data$usdt_sold * .0017
for (i in seq_len(nrow(volume_data))) {
if (is.nan(((volume_data$wzer_sold_in_usdt[i]/volume_data$wzer_sold[i])+(volume_data$usdt_sold[i]/volume_data$wzer_bought[i]))/2) == FALSE){
volume_data$wzer_price[i] <- ((volume_data$wzer_sold_in_usdt[i]/volume_data$wzer_sold[i])+(volume_data$usdt_sold[i]/volume_data$wzer_bought[i]))/2
} else if (is.nan(volume_data$wzer_sold_in_usdt[i]/volume_data$wzer_sold[i]) == FALSE) {
volume_data$wzer_price[i] <- volume_data$wzer_sold_in_usdt[i]/volume_data$wzer_sold[i]
} else if (is.nan(volume_data$usdt_sold[i]/volume_data$wzer_bought[i]) == FALSE) {
volume_data$wzer_price[i] <- volume_data$usdt_sold[i]/volume_data$wzer_bought[i]
} else {
volume_data$wzer_price[i] <- NA
}
}
volume_data_v2 <- volume_data
library(xlsx)
write.xlsx(volume_data_v2, "v2_volume_data.xlsx", row.names = FALSE)