-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathfeat_loader_inbal.py
181 lines (148 loc) · 6.89 KB
/
feat_loader_inbal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import json
import os, pdb
import string
import numpy as np
import h5py
import random
import scipy.misc as misc
# from .dataset_info import *
# from sklearn.model_selection import StratifiedKFold
from collections import OrderedDict
'''
Used for final
'''
class SETLOADERINBAL():
def __init__(self, raw_feats, batch_size, shuffle,
slide_label, feat_ids):
self.slide_label = slide_label
self.slide_list = []
self.slide_data = OrderedDict()
self.label_idx_count = {0:[], 1:[]}
for i, slide in enumerate(raw_feats):
self.slide_data[slide] = {}
self.slide_data[slide]['logits'] = raw_feats[slide]['logits']
self.slide_data[slide]['label'] = int(raw_feats[slide]['label'][0])
feats = []
for fid in feat_ids:
feats.append(raw_feats[slide]['feat'+str(fid)])
self.slide_data[slide]['feat'] = np.concatenate(feats, axis=1)
label = self.slide_data[slide]['label']
assert slide_label[slide] - 1 == label, print('{} is not key'.format(slide))
self.label_idx_count[label].append(i)
# it has too be corresponded to self.label_idx_count.
# it is guaranteed by OrderedDict()
self.slide_list = [a for a in self.slide_data.keys()]
self.ifshuffle = shuffle
self.batch_size = batch_size
self.num_feat = 200
self.num_class = 3 #the logit dimension from CNN features
self.num_data = len(self.slide_list)
self.order = [a for a in range(self.num_data)]
print ('\t init data loader')
if shuffle == True: \
# training data: augment it to be balanced
expand_label = min(self.label_idx_count.keys()) # expand the low_grade
n = [len(a) for a in self.label_idx_count.values()]
multi = int(max(n) / min(n)) - 1
self.order += self.label_idx_count[expand_label] * multi
self.num_data = len(self.order)
print ('\t --> Balance label. Rebuild order by {} times, totally {} data'.format(multi, self.num_data))
self.index = 0
self.shuffle(overflow=False)
def shuffle(self, overflow=True):
if self.ifshuffle and (not overflow or self.index + self.batch_size >= self.num_data):
random.shuffle(self.order)
# print ('--> shuffing data ...')
if self.index + self.batch_size >= self.num_data:
self.index = 0
def next(self, ids):
slide_name = self.slide_list[self.order[ids]]
data = self.slide_data[slide_name]
self.index += 1
self.shuffle()
return data, slide_name
class FEATLOADER:
def __init__(self, batch_size, sampling_rate,
raw_feat_path, groundtruth_root, shuffle=True,
feat_dim=4096, feat_ids=[0,1], use_selected_slide=False):
if use_selected_slide:
selected_slides = json.load(open('./data/wsi/selected_diagnosis_for_comparsion_100.json'))
print ('use {} selected diagnosis slides'.format(len(selected_slides)))
# import pdb; pdb.set_trace()
# read
self.raw_feat = {}
with h5py.File(raw_feat_path+'.h5', "r") as f:
self.slide_list = f.keys()
for slide in self.slide_list:
if use_selected_slide and slide not in selected_slides:
continue
self.raw_feat[slide] = {}
for k in f[slide].keys():
self.raw_feat[slide][k] = f[slide][k][:]
slide_label = {k:v for k, v in json.load(open(os.path.join(groundtruth_root))).items() if k in self.raw_feat.keys()}
if use_selected_slide:
print ('use selected slides')
print (set(selected_slides) - set([a for a in self.raw_feat.keys()]) )
assert(len(slide_label) == len(selected_slides))
self.batch_size = batch_size
self.sampling_rate = sampling_rate
self.num_feat = 200 # TODO
self.sampling_num = int(self.num_feat * self.sampling_rate)
self.feat_dim = feat_dim # TODO
self.feat_ids = feat_ids
np.random.seed(12)
self.set_holder = dict()
self.label_map = {
0: 0,
1: 1
}
self.num_class = len(self.label_map)
self.set_holder = SETLOADERINBAL(self.raw_feat, self.batch_size, shuffle=shuffle,
slide_label=slide_label,
feat_ids=self.feat_ids)
def get_iter_epoch(self):
return int(self.set_holder.num_data / self.set_holder.batch_size)
def load_batch(self):
loader = self.set_holder
X_batch = np.zeros((loader.batch_size, self.feat_dim), np.float32)
Y_batch = np.zeros(loader.batch_size, np.int32)
name_list = []
for c, i in enumerate(range(loader.index, loader.index+loader.batch_size)):
slide_m, slide_name = loader.next(i)
# print ('load name '+str(i%len(loader.slide_list)) + ' ', slide_name)
# print ('sampling ' + slide_name)
X_batch[c,:], Y_batch[c] = self.sampling_feat(slide_m)
return X_batch, Y_batch, slide_name
def load_batch_test(self, duplication):
loader = self.set_holder
X_batch = np.zeros((loader.batch_size*duplication, self.feat_dim), np.float32)
Y_batch = np.zeros(loader.batch_size*duplication, np.int32)
assert(duplication % self.num_class == 0)
name_list = []
for c, i in enumerate(range(loader.index, loader.index+loader.batch_size)):
slide_m, slide_name = loader.next(i)
# print ('load name '+str(i%len(loader.slide_list)) + ' ', slide_name)
# print ('sampling ' + slide_name)
# generate multiple copies for each data where each copy uses logit of one class as sampling rate
for d in range(duplication):
which_lgit = list(self.label_map.values())[d%self.num_class]
X_batch[c*duplication+d,:], Y_batch[c*duplication+d] = self.sampling_feat(slide_m, use_label=which_lgit)
return X_batch, Y_batch, slide_name
def get_run_num(self):
return self.set_holder.num_data // self.batch_size
def sampling_feat(self, slide_data, use_label=None):
logits = slide_data['logits'].copy()
label = self.label_map[slide_data['label']]
if use_label is None:
logits = logits[:,label]
else:
logits = logits[:,use_label]
# print ('use label '+ str(use_label))
feats = slide_data['feat']
p = logits / logits.sum()
p[p<0.001] = 0 # prevent the errors of multinomial
indices = np.random.multinomial(self.sampling_num, p)
# indices = range(200)
slt_feat = feats[indices, :].copy()
slt_feat = np.mean(slt_feat, axis=0) # average all feature
return slt_feat, label