forked from alibaba/EasyCV
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpai_yoloxs_8xb16_300e_coco.py
188 lines (170 loc) · 5.48 KB
/
pai_yoloxs_8xb16_300e_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
_base_ = '../../base.py'
# model settings s m l x
model = dict(
type='YOLOX',
test_conf=0.01,
nms_thre=0.65,
backbone='RepVGGYOLOX',
model_type='s', # s m l x tiny nano
head=dict(
type='YOLOXHead',
model_type='s',
obj_loss_type='BCE',
reg_loss_type='giou',
num_classes=80,
decode_in_inference=
True # set to False when test speed to ignore decode and nms
))
# s m l x
img_scale = (640, 640)
random_size = (14, 26)
scale_ratio = (0.1, 2)
CLASSES = [
'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag',
'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',
'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant',
'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush'
]
# dataset settings
data_root = 'data/coco/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='MMMosaic', img_scale=img_scale, pad_val=114.0),
dict(
type='MMRandomAffine',
scaling_ratio_range=scale_ratio,
border=(-img_scale[0] // 2, -img_scale[1] // 2)),
dict(
type='MMMixUp', # s m x l; tiny nano will detele
img_scale=img_scale,
ratio_range=(0.8, 1.6),
pad_val=114.0),
dict(
type='MMPhotoMetricDistortion',
brightness_delta=32,
contrast_range=(0.5, 1.5),
saturation_range=(0.5, 1.5),
hue_delta=18),
dict(type='MMRandomFlip', flip_ratio=0.5),
dict(type='MMResize', keep_ratio=True),
dict(type='MMPad', pad_to_square=True, pad_val=(114.0, 114.0, 114.0)),
dict(type='MMNormalize', **img_norm_cfg),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
dict(type='MMResize', img_scale=img_scale, keep_ratio=True),
dict(type='MMPad', pad_to_square=True, pad_val=(114.0, 114.0, 114.0)),
dict(type='MMNormalize', **img_norm_cfg),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img'])
]
train_dataset = dict(
type='DetImagesMixDataset',
data_source=dict(
type='DetSourceCoco',
ann_file=data_root + 'annotations/instances_train2017.json',
img_prefix=data_root + 'train2017/',
pipeline=[
dict(type='LoadImageFromFile', to_float32=True),
dict(type='LoadAnnotations', with_bbox=True)
],
classes=CLASSES,
filter_empty_gt=True,
iscrowd=False),
pipeline=train_pipeline,
dynamic_scale=img_scale)
val_dataset = dict(
type='DetImagesMixDataset',
imgs_per_gpu=2,
data_source=dict(
type='DetSourceCoco',
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
pipeline=[
dict(type='LoadImageFromFile', to_float32=True),
dict(type='LoadAnnotations', with_bbox=True)
],
classes=CLASSES,
filter_empty_gt=False,
test_mode=True,
iscrowd=True),
pipeline=test_pipeline,
dynamic_scale=None,
label_padding=False)
data = dict(
imgs_per_gpu=16, workers_per_gpu=4, train=train_dataset, val=val_dataset)
# additional hooks
interval = 10
custom_hooks = [
dict(
type='YOLOXModeSwitchHook',
no_aug_epochs=15,
skip_type_keys=('MMMosaic', 'MMRandomAffine', 'MMMixUp'),
priority=48),
dict(
type='SyncRandomSizeHook',
ratio_range=random_size,
img_scale=img_scale,
interval=interval,
priority=48),
dict(
type='SyncNormHook',
num_last_epochs=15,
interval=interval,
priority=48)
]
# evaluation
eval_config = dict(
interval=10,
gpu_collect=False,
visualization_config=dict(
vis_num=10,
score_thr=0.5,
) # show by TensorboardLoggerHookV2 and WandbLoggerHookV2
)
eval_pipelines = [
dict(
mode='test',
data=data['val'],
evaluators=[dict(type='CocoDetectionEvaluator', classes=CLASSES)],
)
]
checkpoint_config = dict(interval=interval)
# optimizer
optimizer = dict(
type='SGD', lr=0.02, momentum=0.9, weight_decay=5e-4, nesterov=True)
optimizer_config = {}
# learning policy
lr_config = dict(
policy='YOLOX',
warmup='exp',
by_epoch=False,
warmup_by_epoch=True,
warmup_ratio=1,
warmup_iters=5, # 5 epoch
num_last_epochs=15,
min_lr_ratio=0.05)
# exponetial model average
ema = dict(decay=0.9998)
# runtime settings
total_epochs = 300
# yapf:disable
log_config = dict(
interval=100,
hooks=[
dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHookV2'),
# dict(type='WandbLoggerHookV2'),
])
export = dict(export_type = 'ori', preprocess_jit = False, batch_size=1, blade_config=dict(enable_fp16=True, fp16_fallback_op_ratio=0.01), use_trt_efficientnms=False)