-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
206 lines (165 loc) · 7.43 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
#!/usr/bin/env python3
# conding=utf-8
#
# Copyright 2020 Institute of Formal and Applied Linguistics, Faculty of
# Mathematics and Physics, Charles University, Czech Republic.
#
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
import argparse
import os
import torch
import torch.multiprocessing as mp
import torch.distributed as dist
import torch.utils.data
import torch.utils.data.distributed
from transformers import AutoConfig
from model.model import Model
from data.shared_dataset import SharedDataset
from utility.initialize import initialize
from utility.log import Log
from utility.schedule.multi_scheduler import multi_scheduler_wrapper
from utility.autoclip import AutoClip
from data.batch import Batch
from config.params import Params
from utility.predict import predict
from utility.adamw import AdamW
from utility.loss_weight_learner import LossWeightLearner
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default=None, help="path to config file")
parser.add_argument("--data_directory", type=str, default="/home/samueld/mrp_update/mrp")
parser.add_argument("--dist_backend", default="nccl", type=str)
parser.add_argument("--dist_url", default="localhost", type=str)
parser.add_argument("--log_wandb", dest="log_wandb", action="store_true", default=False)
parser.add_argument("--name", default="default", type=str, help="name of this run.")
parser.add_argument("--save_checkpoints", dest="save_checkpoints", action="store_true", default=False)
parser.add_argument("--wandb_log_mode", type=str, default=None, help="How to log the model weights, supported values: {'all', 'gradients', 'parameters', None}")
parser.add_argument("--workers", type=int, default=2, help="number of CPU workers per GPU.")
args = parser.parse_args()
params = Params()
params.load(args)
params.load_state_dict(vars(args))
encoder_config = AutoConfig.from_pretrained(params.encoder)
params.hidden_size = encoder_config.hidden_size
params.n_encoder_layers = encoder_config.num_hidden_layers
return params
def main_worker(gpu, n_gpus_per_node, args):
is_master = gpu == 0
directory = initialize(args, create_directory=is_master, init_wandb=args.log_wandb and is_master)
os.environ["MASTER_ADDR"] = "localhost"
if "MASTER_PORT" not in os.environ:
os.environ["MASTER_PORT"] = "12345"
if args.distributed:
dist.init_process_group(backend=args.dist_backend, init_method="env://", world_size=n_gpus_per_node, rank=gpu)
dataset = SharedDataset(args)
# dataset.load_datasets(args, gpu, n_gpus_per_node)
if args.pretrained is not None:
# it's used for big data and finetuning
checkpoint = torch.load(args.pretrained)
dataset.load_state_dict(args, checkpoint['dataset'])
dataset.load_datasets(args, gpu, n_gpus_per_node, build_vocab=False)
model = Model(dataset, args)
model.load_state_dict(checkpoint['model'])
elif args.base_model is not None:
# use the same field (vocab), for the sake of logits-level ensemble
dataset.load_state_dict(args, torch.load(args.base_model)['dataset'])
dataset.load_datasets(args, gpu, n_gpus_per_node, build_vocab=False)
model = Model(dataset, args)
else:
dataset.load_datasets(args, gpu, n_gpus_per_node)
model = Model(dataset, args)
# different learning rate for defferent encoder layer and different learning rate for decoder
# must ensure the last group belongs to decoder
parameters = [{"params": p, "weight_decay": args.encoder_weight_decay} for p in model.get_encoder_parameters(args.n_encoder_layers)] + [
{"params": model.get_decoder_parameters(), "weight_decay": args.decoder_weight_decay}
]
optimizer = AdamW(parameters, betas=(0.9, args.beta_2))
scheduler = multi_scheduler_wrapper(optimizer, args)
autoclip = AutoClip([p for name, p in model.named_parameters() if "loss_weights" not in name])
if args.balance_loss_weights:
loss_weight_learner = LossWeightLearner(args, model, n_gpus_per_node)
if is_master:
if args.log_wandb:
import wandb
wandb.watch(model, log=args.wandb_log_mode)
print(f"\nmodel: {model}\n")
log = Log(dataset, model, optimizer, args, directory, log_each=10, log_wandb=args.log_wandb)
torch.cuda.set_device(gpu)
model = model.cuda(gpu)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[gpu])
raw_model = model.module
else:
raw_model = model
for epoch in range(args.epochs):
#
# TRAINING
#
model.train()
if is_master:
log.train(len_dataset=dataset.train_size)
i = 0
model.zero_grad()
for batch in dataset.train:
batch = Batch.to(batch, gpu)
total_loss, losses, stats = model(batch)
for head in raw_model.heads:
stats.update(head.loss_weights_dict())
if args.balance_loss_weights:
loss_weight_learner.compute_grad(losses, epoch)
total_loss.backward()
if (i + 1) % args.accumulation_steps == 0:
grad_norm = autoclip()
if args.balance_loss_weights:
loss_weight_learner.step(epoch)
scheduler(epoch)
optimizer.step()
model.zero_grad()
if is_master:
with torch.no_grad():
batch_size = batch["every_input"][0].size(0) * args.accumulation_steps
log(batch_size, stats, args.frameworks, grad_norm=grad_norm, learning_rates=scheduler.lr() + [loss_weight_learner.scheduler.lr()])
del total_loss, losses
i += 1
if not is_master:
continue
#
# VALIDATION CROSS-ENTROPIES
#
model.eval()
log.eval(len_dataset=dataset.val_size)
with torch.no_grad():
for batch in dataset.val:
try:
_, _, stats = model(Batch.to(batch, gpu))
batch_size = batch["every_input"][0].size(0)
log(batch_size, stats, args.frameworks)
except RuntimeError as e:
if 'out of memory' in str(e):
print('| WARNING: ran out of memory, skipping batch')
if hasattr(torch.cuda, 'empty_cache'):
torch.cuda.empty_cache()
else:
raise e
log.flush()
#
# VALIDATION MRP-SCORES
#
predict(raw_model, dataset.val, args.validation_data, args, directory, gpu, run_evaluation=True, epoch=epoch)
#
# TEST PREDICTION
#
os.mkdir(f"{directory}/test_predictions/")
predict(raw_model, dataset.test, args.test_data, args, f"{directory}/test_predictions/", gpu)
if __name__ == "__main__":
args = parse_arguments()
n_gpu = torch.cuda.device_count()
args.distributed = n_gpu > 1
args.batch_size = args.batch_size // max(n_gpu, 1)
if args.distributed:
mp.spawn(main_worker, nprocs=n_gpu, args=(n_gpu, args), join=True)
dist.destroy_process_group()
else:
main_worker(0, 1, args)