-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathbow_validate.py
116 lines (73 loc) · 3.24 KB
/
bow_validate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#!/usr/bin/env python
# validation version of the kaggle BoW script
# changes: train/test split, added logistic regression for comparison with random forest, run rf 10x
import os
import pandas as pd
import numpy as np
from sklearn.cross_validation import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression as LR
from sklearn.metrics import roc_auc_score as AUC
from KaggleWord2VecUtility import KaggleWord2VecUtility
#
data_file = 'data/labeledTrainData.tsv'
data = pd.read_csv( data_file, header = 0, delimiter="\t", quoting = 3 )
train_i, test_i = train_test_split( np.arange( len( data )), train_size = 0.8, random_state = 44 )
train = data.ix[train_i]
test = data.ix[test_i]
# train features
clean_train_reviews = []
# Loop over each review; create an index i that goes from 0 to the length
# of the movie review list
print "Cleaning and parsing the training set movie reviews...\n"
for review in train['review']:
clean_train_reviews.append( " ".join( KaggleWord2VecUtility.review_to_wordlist( review, True )))
# ****** Create a bag of words from the training set
#
print "Creating the bag of words...\n"
vectorizer = CountVectorizer( analyzer = "word", tokenizer = None, preprocessor = None,
stop_words = None, max_features = 5000 )
train_data_features = vectorizer.fit_transform(clean_train_reviews)
train_data_features = train_data_features.toarray()
# test features
# Create an empty list and append the clean reviews one by one
clean_test_reviews = []
print "Cleaning and parsing the test set movie reviews...\n"
for review in test['review']:
clean_test_reviews.append( " ".join( KaggleWord2VecUtility.review_to_wordlist( review, True )))
# Get a bag of words for the test set, and convert to a numpy array
test_data_features = vectorizer.transform( clean_test_reviews )
test_data_features = test_data_features.toarray()
###
print "Training the random forest (this may take a while)..."
forest = RandomForestClassifier( n_estimators = 100, n_jobs = -1, verbose = 1 )
forest = forest.fit( train_data_features, train["sentiment"] )
print "Predicting test labels...\n"
rf_p = forest.predict_proba( test_data_features )
auc = AUC( test['sentiment'].values, rf_p[:,1] )
print "random forest AUC:", auc
# a random score from a _random_ forest
# AUC: 0.919056767104
# let's define a helper function
def train_and_eval_auc( model, train_x, train_y, test_x, test_y ):
model.fit( train_x, train_y )
p = model.predict_proba( test_x )
auc = AUC( test_y, p[:,1] )
return auc
#
lr = LR()
auc = train_and_eval_auc( lr, train_data_features, train["sentiment"], \
test_data_features, test["sentiment"].values )
print "logistic regression AUC:", auc
# logistic regression AUC: 0.925748792247
# logistic regression AUC: 0.928301070895 # different split
# train a random forest ten times, average the scores
rf_aucs = []
for i in range( 10 ):
auc = train_and_eval_auc( forest, train_data_features, train["sentiment"], \
test_data_features, test["sentiment"].values )
print "random forest run {}, AUC: {}".format( i, auc )
rf_aucs.append( auc )
avg_auc = sum( rf_aucs ) / len( rf_aucs )
print "Average AUC from random forest:", avg_auc