Skip to content

Alvin0629/Code-for-DEEP-UNSUPERVISED-LEARNING-FOR-SIMULTANEOUS-VISUAL-ODOMETRY-AND-DEPTH-ESTIMATION-

Repository files navigation

Code for 2019 ICIP paper

This code implemented the method described in the following paper:

Deep Unsupervised Learning for Simultaneous Visual Odometry and Depth Estimation.

2019 IEEE International Conference on Image Processing (ICIP)

To train the network, use:

python3 train.py sfm-learner/KITTI_RAW_DATA/ -b4 -m0.2 -s0.1 --epochs 500 --sequence-length 3 --log-output

#sfm-learner/KITTI_RAW_DATA/# is the path to save the dataset.

To infer the network, use:

python3 run_inference.py --pretrained pretrained_model/Dispnet --dataset-dir test_dir/ --output-dir output_dir/

If you summarize relevant works or refer to the code, please cite:

@inproceedings{lu2019deep,
  title={Deep Unsupervised Learning for Simultaneous Visual Odometry and Depth Estimation},
  author={Lu, Yawen and Lu, Guoyu},
  booktitle={2019 IEEE International Conference on Image Processing (ICIP)},
  pages={2571--2575},
  year={2019},
  organization={IEEE}
}

This implementation is borrowed from SfMLearner paper.

About

Deep Unsupervised Learning for Simultaneous Visual Odometry and Depth Estimation (2019 ICIP)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages