-
Notifications
You must be signed in to change notification settings - Fork 151
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Enabling OpenVINO: added GQCNNOpenVINO
GQCNNOpenVINO, derived from GQCNNTF, implements GQCNN inference with OpenVINO™ backend. GQCnnQualityFunction.__init__() is also updated, to load the GQCNNOpenVINO model. Signed-off-by: Sharron LIU <[email protected]>
- Loading branch information
1 parent
fb8abdb
commit d99e318
Showing
4 changed files
with
243 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Copyright (c) 2019 Intel Corporation. All Rights Reserved. | ||
GQ-CNN inference with OpenVINO. | ||
Author | ||
------ | ||
Sharron LIU | ||
""" | ||
|
||
from .network_openvino import GQCNNOpenVINO | ||
|
||
__all__ = ["GQCNNOpenVINO"] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,219 @@ | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Copyright (c) 2019 Intel Corporation. All Rights Reserved. | ||
GQ-CNN inference with OpenVINO. | ||
Author | ||
------ | ||
Sharron LIU | ||
""" | ||
from collections import OrderedDict | ||
import json | ||
import math | ||
import os | ||
import time | ||
import numpy as np | ||
|
||
from autolab_core import Logger | ||
from ...utils import (InputDepthMode, GQCNNFilenames) | ||
from ..tf import GQCNNTF | ||
from openvino.inference_engine import IENetwork, IECore | ||
|
||
|
||
class GQCNNOpenVINO(GQCNNTF): | ||
"""GQ-CNN network implemented in OpenVINO.""" | ||
|
||
BatchSize = 64 | ||
|
||
def __init__(self, gqcnn_config, verbose=True, log_file=None): | ||
""" | ||
Parameters | ||
---------- | ||
gqcnn_config : dict | ||
Python dictionary of model configuration parameters. | ||
verbose : bool | ||
Whether or not to log model output to `stdout`. | ||
log_file : str | ||
If provided, model output will also be logged to this file. | ||
""" | ||
self._sess = None | ||
# Set up logger. | ||
self._logger = Logger.get_logger(self.__class__.__name__, | ||
log_file=log_file, | ||
silence=(not verbose), | ||
global_log_file=verbose) | ||
self._parse_config(gqcnn_config) | ||
|
||
@staticmethod | ||
def load(model_dir, device, verbose=True, log_file=None): | ||
"""Instantiate a trained GQ-CNN for fine-tuning or inference. | ||
Parameters | ||
---------- | ||
model_dir : str | ||
Path to trained GQ-CNN model. | ||
device : str | ||
Device type for inference to execute CPU|GPU|MYRIAD | ||
verbose : bool | ||
Whether or not to log model output to `stdout`. | ||
log_file : str | ||
If provided, model output will also be logged to this file. | ||
Returns | ||
------- | ||
:obj:`GQCNNOpenVINO` | ||
Initialized GQ-CNN. | ||
""" | ||
# Load GQCNN config | ||
config_file = os.path.join(model_dir, GQCNNFilenames.SAVED_CFG) | ||
with open(config_file) as data_file: | ||
train_config = json.load(data_file, object_pairs_hook=OrderedDict) | ||
# Support for legacy configs. | ||
try: | ||
gqcnn_config = train_config["gqcnn"] | ||
except KeyError: | ||
gqcnn_config = train_config["gqcnn_config"] | ||
gqcnn_config["debug"] = 0 | ||
gqcnn_config["seed"] = 0 | ||
# Legacy networks had no angular support. | ||
gqcnn_config["num_angular_bins"] = 0 | ||
# Legacy networks only supported depth integration through pose | ||
# stream. | ||
gqcnn_config["input_depth_mode"] = InputDepthMode.POSE_STREAM | ||
|
||
# Initialize OpenVINO network | ||
gqcnn = GQCNNOpenVINO(gqcnn_config, verbose=verbose, log_file=log_file) | ||
if (device == "MYRIAD"): # MYRIAD batch size force to 1 | ||
gqcnn.set_batch_size(1) | ||
else: | ||
gqcnn.set_batch_size(64) | ||
|
||
# Initialize input tensors for prediction | ||
gqcnn._input_im_arr = np.zeros((gqcnn._batch_size, gqcnn._im_height, | ||
gqcnn._im_width, gqcnn._num_channels)) | ||
gqcnn._input_pose_arr = np.zeros((gqcnn._batch_size, gqcnn._pose_dim)) | ||
|
||
# Initialize mean tensor and standard tensor | ||
gqcnn.init_mean_and_std(model_dir) | ||
|
||
# Load OpenVINO network on specified device | ||
gqcnn.load_openvino(model_dir, device) | ||
|
||
return gqcnn | ||
|
||
def open_session(self): | ||
pass | ||
|
||
def close_session(self): | ||
pass | ||
|
||
def load_openvino(self, model_dir, device): | ||
self._ie = IECore() | ||
# load OpenVINO executable network to device | ||
model_path = os.path.split(model_dir) | ||
model_xml = os.path.join(model_path[0], "OpenVINO", model_path[1]) | ||
model_xml = os.path.join( | ||
model_xml, "FP16", "inference_graph_frozen.xml") | ||
model_bin = os.path.splitext(model_xml)[0] + ".bin" | ||
self._vino_net = IENetwork(model_xml, model_bin) | ||
self._vino_net.batch_size = self._batch_size | ||
assert len(self._vino_net.inputs.keys()) == 2, "GQCNN two input nodes" | ||
assert len(self._vino_net.outputs) == 1, "GQCNN one output node" | ||
vino_inputs = iter(self._vino_net.inputs) | ||
self._input_im = next(vino_inputs) | ||
self._input_pose = next(vino_inputs) | ||
self._output_blob = next(iter(self._vino_net.outputs)) | ||
self._vino_exec_net = self._ie.load_network( | ||
network=self._vino_net, device_name=device) | ||
|
||
def unload_openvino(self): | ||
del self._vino_exec_net | ||
del self._vino_net | ||
del self._ie | ||
|
||
def predict_openvino(self, image_arr, pose_arr, verbose=False): | ||
""" Predict a set of images in batches | ||
Parameters | ||
---------- | ||
image_arr : :obj:`tensorflow Tensor` | ||
4D Tensor of images to be predicted | ||
pose_arr : :obj:`tensorflow Tensor` | ||
4D Tensor of poses to be predicted | ||
""" | ||
|
||
# Get prediction start time. | ||
start_time = time.time() | ||
|
||
if verbose: | ||
self._logger.info("Predicting...") | ||
|
||
# Setup for prediction. | ||
num_batches = math.ceil(image_arr.shape[0] / self._batch_size) | ||
num_images = image_arr.shape[0] | ||
num_poses = pose_arr.shape[0] | ||
|
||
output_arr = np.zeros([num_images] + list( | ||
self._vino_net.outputs[self._output_blob].shape[1:])) | ||
if num_images != num_poses: | ||
raise ValueError("Must provide same number of images as poses!") | ||
|
||
# Predict in batches. | ||
i = 0 | ||
batch_idx = 0 | ||
while i < num_images: | ||
if verbose: | ||
self._logger.info("Predicting batch {} of {}...{}".format( | ||
batch_idx, num_batches, num_images)) | ||
batch_idx += 1 | ||
dim = min(self._batch_size, num_images - i) | ||
cur_ind = i | ||
end_ind = cur_ind + dim | ||
|
||
if self._input_depth_mode == InputDepthMode.POSE_STREAM: | ||
self._input_im_arr[:dim, ...] = ( | ||
image_arr[cur_ind:end_ind, ...] - | ||
self._im_mean) / self._im_std | ||
self._input_pose_arr[:dim, :] = ( | ||
pose_arr[cur_ind:end_ind, :] - | ||
self._pose_mean) / self._pose_std | ||
elif self._input_depth_mode == InputDepthMode.SUB: | ||
self._input_im_arr[:dim, ...] = image_arr[cur_ind:end_ind, ...] | ||
self._input_pose_arr[:dim, :] = pose_arr[cur_ind:end_ind, :] | ||
elif self._input_depth_mode == InputDepthMode.IM_ONLY: | ||
self._input_im_arr[:dim, ...] = ( | ||
image_arr[cur_ind:end_ind, ...] - | ||
self._im_mean) / self._im_std | ||
|
||
n, c, h, w = self._vino_net.inputs[self._input_im].shape | ||
input_im_arr = self._input_im_arr.reshape((n, c, h, w)) | ||
res = self._vino_exec_net.infer( | ||
inputs={self._input_im: input_im_arr, | ||
self._input_pose: self._input_pose_arr}) | ||
|
||
# Allocate output tensor. | ||
output_arr[cur_ind:end_ind, :] = res[self._output_blob][:dim, :] | ||
i = end_ind | ||
|
||
# Get total prediction time. | ||
pred_time = time.time() - start_time | ||
if verbose: | ||
self._logger.info("Prediction took {} seconds.".format(pred_time)) | ||
|
||
return output_arr | ||
|
||
def predict(self, image_arr, pose_arr, verbose=False): | ||
"""Predict the probability of grasp success given a depth image and | ||
gripper pose. | ||
Parameters | ||
---------- | ||
image_arr : :obj:`numpy ndarray` | ||
4D tensor of depth images. | ||
pose_arr : :obj:`numpy ndarray` | ||
Tensor of gripper poses. | ||
verbose : bool | ||
Whether or not to log progress to stdout, useful to turn off during | ||
training. | ||
""" | ||
return self.predict_openvino(image_arr, pose_arr, verbose=verbose) |