-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
a81463f
commit 9b2fd00
Showing
1 changed file
with
98 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,98 @@ | ||
import shutil | ||
from collections.abc import Callable, Sequence | ||
from importlib.metadata import version | ||
from itertools import product | ||
from timeit import timeit | ||
|
||
import gudhi as gd | ||
import numpy as np | ||
import pandas as pd | ||
|
||
import multipers as mp | ||
import multipers.grids as mpg | ||
import multipers.ml.point_clouds as mmp | ||
from multipers.data import noisy_annulus, orbit, three_annulus | ||
from multipers.ml.convolutions import DTM, KDE | ||
from multipers.slicer import Slicer_type, available_columns | ||
|
||
np.random.seed(0) | ||
|
||
available_dataset: dict[str, Callable] = { | ||
"orbit35": lambda n: orbit(n=n, r=3.5), | ||
"orbit41": lambda n: orbit(n=n, r=4.1), | ||
"orbit43": lambda n: orbit(n=n, r=4.3), | ||
"na": lambda n: noisy_annulus(n1=(m := int((2 / 3) * n)), n2=n - m), | ||
"3a": lambda n: three_annulus(num_pts=(m := int((2 / 3) * n)), num_outliers=n - m), | ||
} | ||
|
||
|
||
datasets: Sequence[str] = list(available_dataset.keys()) | ||
degrees:Sequence[int] = [0, 1] | ||
num_pts:Sequence[int] = [200] | ||
complexes = ["delaunay", "rips"] | ||
invariants = ["mma", "slice", "hilbert", "rank"] | ||
vineyard = ["vine", "novine"] | ||
num_lines = 50 | ||
num_repetition = 5 | ||
timings = {} | ||
available_dtype = [np.float64] | ||
|
||
|
||
def fill_timing(arg, f): | ||
timings[arg] = timeit(f, number=num_repetition) | ||
terminal_width = shutil.get_terminal_size().columns | ||
left = str(args) | ||
right = f"{timings[arg]:.4f}" | ||
dots = terminal_width - (len(left) + len(right) + 2) | ||
print(f"{left} {'.' * dots} {right}", end="\n") | ||
|
||
|
||
for args in product( | ||
num_pts, datasets, complexes, invariants, degrees, vineyard, available_dtype, available_columns | ||
): | ||
n, dataset, cplx, inv, degree, vine, dtype,col = args | ||
pts = np.asarray(available_dataset[dataset](n)) | ||
s: Slicer_type = mmp.PointCloud2FilteredComplex( | ||
complex=cplx, | ||
bandwidths=[0.2], | ||
num_collapses=2, | ||
output_type="slicer", | ||
reduce_degrees=[degree], | ||
expand_dim=degree + 1, | ||
).fit_transform([pts])[0][0] | ||
s = mp.Slicer(s, vineyard=vine == "vine", dtype=dtype,col) | ||
box = mpg.compute_bounding_box(s) | ||
s.minpres_degree = -1 ## makes it non-minpres again | ||
if inv == "mma" and vine: | ||
f = lambda: mp.module_approximation(mp.Slicer(s, vineyard=True)) | ||
elif inv == "slice": | ||
basepoints = np.random.uniform( | ||
low=box[None, :, 0], | ||
high=box[None, :, 1], | ||
size=(num_lines, s.num_parameters), | ||
) | ||
directions = [np.ones(s.num_parameters)] * num_lines | ||
f = lambda: s.persistence_on_lines(basepoints, directions) | ||
elif inv == "hilbert": | ||
grid = mpg.compute_grid(s, resolution=50, strategy="regular") | ||
f = lambda: mp.signed_measure(s, grid=grid, degree=degree, invariant="hilbert") | ||
|
||
elif inv == "rank": | ||
grid = mpg.compute_grid(s, resolution=20, strategy="regular") | ||
f = lambda: mp.signed_measure(s, grid=grid, degree=degree, invariant="rank") | ||
else: | ||
raise ValueError(f"Invariant {inv} is not benchmarkable.") | ||
|
||
try: | ||
fill_timing(args, f) | ||
except ValueError: | ||
print("invalid args", args, "with function", f) | ||
|
||
|
||
pd.DataFrame( | ||
[ | ||
(n, dataset, cplx, inv, degree, vine, dtype, t) | ||
for (n, dataset, cplx, inv, degree, vine, dtype), t in timings.items() | ||
], | ||
columns=["npts", "dataset", "complex", "inv", "degree", "vine", "dtype", "timing"], | ||
).to_csv(f"benchmark_v{mp.__version__}.csv", index=False) |