Skip to content

Commit

Permalink
Hangprinter: Loop around the anchors instead of naming them directly
Browse files Browse the repository at this point in the history
  • Loading branch information
jtimon committed Feb 25, 2023
1 parent 6e47080 commit 44d22c2
Showing 1 changed file with 169 additions and 80 deletions.
249 changes: 169 additions & 80 deletions src/Movement/Kinematics/HangprinterKinematics.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -129,16 +129,15 @@ void HangprinterKinematics::Recalc() noexcept

// This is the difference between a "line length" and a "line position"
// "line length" == ("line position" + "line length in origin")
distancesOrigin[A_AXIS] = fastSqrtf(fsquare(anchors[A_AXIS][0]) + fsquare(anchors[A_AXIS][1]) + fsquare(anchors[A_AXIS][2]));
distancesOrigin[B_AXIS] = fastSqrtf(fsquare(anchors[B_AXIS][0]) + fsquare(anchors[B_AXIS][1]) + fsquare(anchors[B_AXIS][2]));
distancesOrigin[C_AXIS] = fastSqrtf(fsquare(anchors[C_AXIS][0]) + fsquare(anchors[C_AXIS][1]) + fsquare(anchors[C_AXIS][2]));
distancesOrigin[D_AXIS] = fastSqrtf(fsquare(anchors[D_AXIS][0]) + fsquare(anchors[D_AXIS][1]) + fsquare(anchors[D_AXIS][2]));

for (size_t i = 0; i < HANGPRINTER_AXES; ++i)
{
distancesOrigin[i] = fastSqrtf(fsquare(anchors[i][0]) + fsquare(anchors[i][1]) + fsquare(anchors[i][2]));
}

//// Line buildup compensation
float stepsPerUnitTimesRTmp[HANGPRINTER_AXES] = { 0.0 };
Platform& platform = reprap.GetPlatform(); // No const because we want to set drive steper per unit
for (size_t i = 0; i < HANGPRINTER_AXES; i++)
for (size_t i = 0; i < HANGPRINTER_AXES; ++i)
{
const uint8_t driver = platform.GetAxisDriversConfig(i).driverNumbers[0].localDriver; // Only supports single driver
bool dummy;
Expand Down Expand Up @@ -203,11 +202,10 @@ bool HangprinterKinematics::Configure(unsigned int mCode, GCodeBuffer& gb, const
if (mCode == 669)
{
const bool seenNonGeometry = TryConfigureSegmentation(gb);
gb.TryGetFloatArray('A', 3, anchors[A_AXIS], seen);
gb.TryGetFloatArray('B', 3, anchors[B_AXIS], seen);
gb.TryGetFloatArray('C', 3, anchors[C_AXIS], seen);
gb.TryGetFloatArray('D', 3, anchors[D_AXIS], seen);

for (size_t i = 0; i < HANGPRINTER_AXES; ++i)
{
gb.TryGetFloatArray(ANCHOR_CHARS[i], 3, anchors[i], seen);
}
if (gb.Seen('P'))
{
printRadius = gb.GetPositiveFValue();
Expand All @@ -221,18 +219,12 @@ bool HangprinterKinematics::Configure(unsigned int mCode, GCodeBuffer& gb, const
else if (!seenNonGeometry && !gb.Seen('K'))
{
Kinematics::Configure(mCode, gb, reply, error);
reply.lcatf(
"A:%.2f, %.2f, %.2f\n"
"B:%.2f, %.2f, %.2f\n"
"C:%.2f, %.2f, %.2f\n"
"D:%.2f, %.2f, %.2f\n"
"P:Print radius: %.1f",
(double)anchors[A_AXIS][X_AXIS], (double)anchors[A_AXIS][Y_AXIS], (double)anchors[A_AXIS][Z_AXIS],
(double)anchors[B_AXIS][X_AXIS], (double)anchors[B_AXIS][Y_AXIS], (double)anchors[B_AXIS][Z_AXIS],
(double)anchors[C_AXIS][X_AXIS], (double)anchors[C_AXIS][Y_AXIS], (double)anchors[C_AXIS][Z_AXIS],
(double)anchors[D_AXIS][X_AXIS], (double)anchors[D_AXIS][Y_AXIS], (double)anchors[D_AXIS][Z_AXIS],
(double)printRadius
);
for (size_t i = 0; i < HANGPRINTER_AXES; ++i)
{
reply.lcatf("%c:%.2f, %.2f, %.2f",
ANCHOR_CHARS[i], (double)anchors[i][X_AXIS], (double)anchors[i][Y_AXIS], (double)anchors[i][Z_AXIS]);
}
reply.lcatf("P:Print radius: %.1f", (double)printRadius);
}
}
else if (mCode == 666)
Expand All @@ -256,36 +248,97 @@ bool HangprinterKinematics::Configure(unsigned int mCode, GCodeBuffer& gb, const
}
else
{
reply.printf(
"M666 Q%.4f\n"
"R%.2f:%.2f:%.2f:%.2f\n"
"U%d:%d:%d:%d\n"
"O%d:%d:%d:%d\n"
"L%d:%d:%d:%d\n"
"H%d:%d:%d:%d\n"
"J%d:%d:%d:%d\n"
"W%.2f\n"
"S%.2f\n"
"I%.1f:%.1f:%.1f:%.1f\n"
"X%.1f:%.1f:%.1f:%.1f\n"
"Y%.1f:%.1f:%.1f:%.1f\n"
"T%.1f\n"
"C%.4f:%.4f:%.4f:%.4f",
(double)spoolBuildupFactor,
(double)spoolRadii[A_AXIS], (double)spoolRadii[B_AXIS], (double)spoolRadii[C_AXIS], (double)spoolRadii[D_AXIS],
(int)mechanicalAdvantage[A_AXIS], (int)mechanicalAdvantage[B_AXIS], (int)mechanicalAdvantage[C_AXIS], (int)mechanicalAdvantage[D_AXIS],
(int)linesPerSpool[A_AXIS], (int)linesPerSpool[B_AXIS], (int)linesPerSpool[C_AXIS], (int)linesPerSpool[D_AXIS],
(int)motorGearTeeth[A_AXIS], (int)motorGearTeeth[B_AXIS], (int)motorGearTeeth[C_AXIS], (int)motorGearTeeth[D_AXIS],
(int)spoolGearTeeth[A_AXIS], (int)spoolGearTeeth[B_AXIS], (int)spoolGearTeeth[C_AXIS], (int)spoolGearTeeth[D_AXIS],
(int)fullStepsPerMotorRev[A_AXIS], (int)fullStepsPerMotorRev[B_AXIS], (int)fullStepsPerMotorRev[C_AXIS], (int)fullStepsPerMotorRev[D_AXIS],
(double)moverWeight_kg,
(double)springKPerUnitLength,
(double)minPlannedForce_Newton[A_AXIS], (double)minPlannedForce_Newton[B_AXIS], (double)minPlannedForce_Newton[C_AXIS], (double)minPlannedForce_Newton[D_AXIS],
(double)maxPlannedForce_Newton[A_AXIS], (double)maxPlannedForce_Newton[B_AXIS], (double)maxPlannedForce_Newton[C_AXIS], (double)maxPlannedForce_Newton[D_AXIS],
(double)guyWireLengths[A_AXIS], (double)guyWireLengths[B_AXIS], (double)guyWireLengths[C_AXIS], (double)guyWireLengths[D_AXIS],
(double)targetForce_Newton,
(double)torqueConstants[A_AXIS], (double)torqueConstants[B_AXIS], (double)torqueConstants[C_AXIS], (double)torqueConstants[D_AXIS]
);
reply.printf("M666 Q%.4f\n", (double)spoolBuildupFactor);
reply.lcat("R:Spool r ");
for (size_t i = 0; i < HANGPRINTER_AXES; ++i)
{
if (i != 0) {
reply.cat(", ");
}
reply.catf("%.2f", (double)spoolRadii[i]);
}
reply.lcat("U:Mech Adv ");
for (size_t i = 0; i < HANGPRINTER_AXES; ++i)
{
if (i != 0) {
reply.cat(", ");
}
reply.catf("%d", (int)mechanicalAdvantage[i]);
}
reply.lcat("O:Lines/spool ");
for (size_t i = 0; i < HANGPRINTER_AXES; ++i)
{
if (i != 0) {
reply.cat(", ");
}
reply.catf("%d", (int)linesPerSpool[i]);
}
reply.lcat("L:Motor gear teeth ");
for (size_t i = 0; i < HANGPRINTER_AXES; ++i)
{
if (i != 0) {
reply.cat(", ");
}
reply.catf("%d", (int)motorGearTeeth[i]);
}
reply.lcat("H:Spool gear teeth ");
for (size_t i = 0; i < HANGPRINTER_AXES; ++i)
{
if (i != 0) {
reply.cat(", ");
}
reply.catf("%d", (int)spoolGearTeeth[i]);
}
reply.lcat("J:Full steps/rev ");
for (size_t i = 0; i < HANGPRINTER_AXES; ++i)
{
if (i != 0) {
reply.cat(", ");
}
reply.catf("%d", (int)fullStepsPerMotorRev[i]);
}

reply.lcatf("W %.2f\n", (double)moverWeight_kg);
reply.lcatf("S %.2f\n", (double)springKPerUnitLength);

reply.lcat("I%.1f:%.1f:%.1f:%.1f\n ");
for (size_t i = 0; i < HANGPRINTER_AXES; ++i)
{
if (i != 0) {
reply.cat(", ");
}
reply.catf("%d", (int)minPlannedForce_Newton[i]);
}

reply.lcat("X%.1f:%.1f:%.1f:%.1f\n ");
for (size_t i = 0; i < HANGPRINTER_AXES; ++i)
{
if (i != 0) {
reply.cat(", ");
}
reply.catf("%d", (int)maxPlannedForce_Newton[i]);
}

reply.lcat("Y%.1f:%.1f:%.1f:%.1f\n ");
for (size_t i = 0; i < HANGPRINTER_AXES; ++i)
{
if (i != 0) {
reply.cat(", ");
}
reply.catf("%d", (int)guyWireLengths[i]);
}

reply.lcatf("T%.1f\n", (double)targetForce_Newton);

reply.lcat("C%.4f:%.4f:%.4f:%.4f\n ");
for (size_t i = 0; i < HANGPRINTER_AXES; ++i)
{
if (i != 0) {
reply.cat(", ");
}
reply.catf("%d", (int)torqueConstants[i]);
}

}
}
else
Expand All @@ -300,11 +353,9 @@ bool HangprinterKinematics::CartesianToMotorSteps(const float machinePos[], cons
size_t numVisibleAxes, size_t numTotalAxes, int32_t motorPos[], bool isCoordinated) const noexcept
{
float distances[HANGPRINTER_AXES];
distances[A_AXIS] = hyp3(machinePos, anchors[A_AXIS]);
distances[B_AXIS] = hyp3(machinePos, anchors[B_AXIS]);
distances[C_AXIS] = hyp3(machinePos, anchors[C_AXIS]);
distances[D_AXIS] = hyp3(machinePos, anchors[D_AXIS]);

for (size_t i{0}; i < HANGPRINTER_AXES; ++i) {
distances[i] = hyp3(machinePos, anchors[i]);
}

float springKs[HANGPRINTER_AXES];
for (size_t i{0}; i < HANGPRINTER_AXES; ++i) {
Expand All @@ -325,10 +376,10 @@ bool HangprinterKinematics::CartesianToMotorSteps(const float machinePos[], cons
linePos[i] = relaxedSpringLengths[i] - relaxedSpringLengthsOrigin[i];
}

motorPos[A_AXIS] = lrintf(k0[A_AXIS] * (fastSqrtf(spoolRadiiSq[A_AXIS] + linePos[A_AXIS] * k2[A_AXIS]) - spoolRadii[A_AXIS]));
motorPos[B_AXIS] = lrintf(k0[B_AXIS] * (fastSqrtf(spoolRadiiSq[B_AXIS] + linePos[B_AXIS] * k2[B_AXIS]) - spoolRadii[B_AXIS]));
motorPos[C_AXIS] = lrintf(k0[C_AXIS] * (fastSqrtf(spoolRadiiSq[C_AXIS] + linePos[C_AXIS] * k2[C_AXIS]) - spoolRadii[C_AXIS]));
motorPos[D_AXIS] = lrintf(k0[D_AXIS] * (fastSqrtf(spoolRadiiSq[D_AXIS] + linePos[D_AXIS] * k2[D_AXIS]) - spoolRadii[D_AXIS]));
for (size_t i = 0; i < HANGPRINTER_AXES; ++i)
{
motorPos[i] = lrintf(k0[i] * (fastSqrtf(spoolRadiiSq[i] + linePos[i] * k2[i]) - spoolRadii[i]));
}

return true;
}
Expand Down Expand Up @@ -555,54 +606,90 @@ bool HangprinterKinematics::WriteCalibrationParameters(FileStore *f) const noexc
ok = f->Write(scratchString.c_str());
if (!ok) return false;

scratchString.printf("R%.3f:%.3f:%.3f:%.3f", (double)spoolRadii[A_AXIS], (double)spoolRadii[B_AXIS], (double)spoolRadii[C_AXIS], (double)spoolRadii[D_AXIS]);
scratchString.printf(" R%.3f", (double)spoolRadii[0]);
for (size_t i = 1; i < HANGPRINTER_AXES; ++i)
{
scratchString.catf(":%.3f", (double)spoolRadii[i]);
}
ok = f->Write(scratchString.c_str());
if (!ok) return false;

scratchString.printf("U%d:%d:%d:%d", (int)mechanicalAdvantage[A_AXIS], (int)mechanicalAdvantage[B_AXIS], (int)mechanicalAdvantage[C_AXIS], (int)mechanicalAdvantage[D_AXIS]);
scratchString.printf(" U%.3f", (double)mechanicalAdvantage[0]);
for (size_t i = 1; i < HANGPRINTER_AXES; ++i)
{
scratchString.catf(":%.3f", (double)mechanicalAdvantage[i]);
}
ok = f->Write(scratchString.c_str());
if (!ok) return false;

scratchString.printf(" O%d:%d:%d:%d", (int)linesPerSpool[A_AXIS], (int)linesPerSpool[B_AXIS], (int)linesPerSpool[C_AXIS], (int)linesPerSpool[D_AXIS]);
scratchString.printf(" O%.3f", (double)linesPerSpool[0]);
for (size_t i = 1; i < HANGPRINTER_AXES; ++i)
{
scratchString.catf(":%.3f", (double)linesPerSpool[i]);
}
ok = f->Write(scratchString.c_str());
if (!ok) return false;

scratchString.printf(" L%d:%d:%d:%d", (int)motorGearTeeth[A_AXIS], (int)motorGearTeeth[B_AXIS], (int)motorGearTeeth[C_AXIS], (int)motorGearTeeth[D_AXIS]);
scratchString.printf(" L%.3f", (double)motorGearTeeth[0]);
for (size_t i = 1; i < HANGPRINTER_AXES; ++i)
{
scratchString.catf(":%.3f", (double)motorGearTeeth[i]);
}
ok = f->Write(scratchString.c_str());
if (!ok) return false;

scratchString.printf(" H%d:%d:%d:%d", (int)motorGearTeeth[A_AXIS], (int)motorGearTeeth[B_AXIS], (int)motorGearTeeth[C_AXIS], (int)motorGearTeeth[D_AXIS]);
scratchString.printf(" H%.3f", (double)spoolGearTeeth[0]);
for (size_t i = 1; i < HANGPRINTER_AXES; ++i)
{
scratchString.catf(":%.3f", (double)spoolGearTeeth[i]);
}
ok = f->Write(scratchString.c_str());
if (!ok) return false;

scratchString.printf(" J%d:%d:%d:%d", (int)fullStepsPerMotorRev[A_AXIS], (int)fullStepsPerMotorRev[B_AXIS], (int)fullStepsPerMotorRev[C_AXIS], (int)fullStepsPerMotorRev[D_AXIS]);
scratchString.printf(" J%.3f", (double)fullStepsPerMotorRev[0]);
for (size_t i = 1; i < HANGPRINTER_AXES; ++i)
{
scratchString.catf(":%.3f", (double)fullStepsPerMotorRev[i]);
}
ok = f->Write(scratchString.c_str());
if (!ok) return false;

scratchString.printf(" W%.2f S%.2f", (double)moverWeight_kg, (double)springKPerUnitLength);
ok = f->Write(scratchString.c_str());
if (!ok) return false;

scratchString.printf(" I%.1f:%.1f:%.1f:%.1f",
(double)minPlannedForce_Newton[A_AXIS], (double)minPlannedForce_Newton[B_AXIS], (double)minPlannedForce_Newton[C_AXIS], (double)minPlannedForce_Newton[D_AXIS]);
scratchString.printf(" I%.1f", (double)minPlannedForce_Newton[0]);
for (size_t i = 1; i < HANGPRINTER_AXES; ++i)
{
scratchString.catf(":%.1f", (double)minPlannedForce_Newton[i]);
}
ok = f->Write(scratchString.c_str());
if (!ok) return false;

scratchString.printf(" X%.1f:%.1f:%.1f:%.1f",
(double)maxPlannedForce_Newton[A_AXIS], (double)maxPlannedForce_Newton[B_AXIS], (double)maxPlannedForce_Newton[C_AXIS], (double)maxPlannedForce_Newton[D_AXIS]);
scratchString.printf(" X%.1f", (double)maxPlannedForce_Newton[0]);
for (size_t i = 1; i < HANGPRINTER_AXES; ++i)
{
scratchString.catf(":%.1f", (double)maxPlannedForce_Newton[i]);
}
ok = f->Write(scratchString.c_str());
if (!ok) return false;

scratchString.printf(" Y%.1f:%.1f:%.1f:%.1f",
(double)guyWireLengths[A_AXIS], (double)guyWireLengths[B_AXIS], (double)guyWireLengths[C_AXIS], (double)guyWireLengths[D_AXIS]);
scratchString.printf(" Y%.1f", (double)guyWireLengths[0]);
for (size_t i = 1; i < HANGPRINTER_AXES; ++i)
{
scratchString.catf(":%.1f", (double)guyWireLengths[i]);
}
ok = f->Write(scratchString.c_str());
if (!ok) return false;

scratchString.printf(" T%.1f", (double)targetForce_Newton);
ok = f->Write(scratchString.c_str());
if (!ok) return false;

scratchString.printf(" C%.4f:%.4f:%.4f:%.4f\n", (double)torqueConstants[A_AXIS], (double)torqueConstants[B_AXIS], (double)torqueConstants[C_AXIS], (double)torqueConstants[D_AXIS]);
scratchString.printf(" C%.4f", (double)torqueConstants[0]);
for (size_t i = 1; i < HANGPRINTER_AXES; ++i)
{
scratchString.catf(":%.4f", (double)torqueConstants[i]);
}
ok = f->Write(scratchString.c_str());

return ok;
Expand Down Expand Up @@ -708,10 +795,12 @@ void HangprinterKinematics::ForwardTransform(float const a, float const b, float
// Print all the parameters for debugging
void HangprinterKinematics::PrintParameters(const StringRef& reply) const noexcept
{
reply.printf("Anchor coordinates (%.2f,%.2f,%.2f) (%.2f,%.2f,%.2f) (%.2f,%.2f,%.2f)\n",
(double)anchors[A_AXIS][X_AXIS], (double)anchors[A_AXIS][Y_AXIS], (double)anchors[A_AXIS][Z_AXIS],
(double)anchors[B_AXIS][X_AXIS], (double)anchors[B_AXIS][Y_AXIS], (double)anchors[B_AXIS][Z_AXIS],
(double)anchors[C_AXIS][X_AXIS], (double)anchors[C_AXIS][Y_AXIS], (double)anchors[C_AXIS][Z_AXIS]);
reply.printf("Anchor coordinates");
for (size_t i = 0; i < HANGPRINTER_AXES; ++i)
{
reply.catf(" (%.2f,%.2f,%.2f)", (double)anchors[i][X_AXIS], (double)anchors[i][Y_AXIS], (double)anchors[i][Z_AXIS]);
}
reply.cat("\n");
}

#if DUAL_CAN
Expand Down

0 comments on commit 44d22c2

Please sign in to comment.