Source code for the paper entitled "A Trace-Driven Approach to Mobile App Functionality Classification"
Step 1: conda create --name rat python=3.6.5;
Step 2: activate the environment 'rat' by running 'conda activate rat';
Step 3: install the following libraries in 'rat'.
Numpy: conda install -c anaconda numpy=1.14.3
Pandas: conda install -c anaconda pandas=0.23.0
Scikit-learn: conda install -c anaconda scikit-learn=0.19.1
Treelib: conda install -c conda-forge treelib=1.5.5
Gensim: conda install -c anaconda gensim=3.4.0
Tensorflow:
if you have a GPU equiped with CUDA:
conda install tensorflow=1.11.0=gpu_py36h5dc63e2_0
else:
conda install tensorflow=1.10.0=eigen_py36h849fbd8_0
H5Py: conda install -c anaconda h5py=2.9.0
Matplotlib: conda install -c conda-forge matplotlib=2.2.2
Wordcloud: conda install -c conda-forge wordcloud
Step 1: activate the environment 'rat' by running 'conda activate rat';
Step 2: conda env export --file rat_20210627.yml
Step 3: find and store the environment file 'rat_20210627.yml' as shown in the project directory.
Step 1: move 'rat_20210627.yml' to 'd:' of the target computer;
Step 2: conda env create -f d:\rat_20210627.yml.