Skip to content

Commit

Permalink
Hook for managing any Random instance
Browse files Browse the repository at this point in the history
This generalises our management of the global random and numpy.random states to work for any registered Random instance.

That's useful for simulation and scheduling frameworks that maintain their own random state, such as Trio.
  • Loading branch information
Zac-HD committed Jan 17, 2019
1 parent 703b6a1 commit 9697f23
Show file tree
Hide file tree
Showing 4 changed files with 138 additions and 20 deletions.
9 changes: 9 additions & 0 deletions hypothesis-python/RELEASE.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
RELEASE_TYPE: minor

This release adds :func:`random_module.register <hypothesis.strategies.random_module>`,
which registers ``random.Random`` instances to be seeded and reset by
Hypothesis to ensure that test cases are deterministic.

We still recommend explicitly passing a ``random.Random`` instance from
:func:`~hypothesis.strategies.randoms` if possible, but registering a
framework-global state for Hypothesis to manage is better than flaky tests!
27 changes: 18 additions & 9 deletions hypothesis-python/src/hypothesis/_strategies.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,6 @@
import enum
import math
import operator
import random
import string
import sys
from decimal import Context, Decimal, localcontext
Expand Down Expand Up @@ -55,6 +54,7 @@
check_sample,
integer_range,
)
from hypothesis.internal.entropy import get_seeder_and_restorer, register
from hypothesis.internal.floats import (
count_between_floats,
float_of,
Expand Down Expand Up @@ -132,6 +132,7 @@
numpy = None

if False:
import random # noqa
from types import ModuleType # noqa
from typing import Any, Dict, Union, Sequence, Callable, Pattern # noqa
from typing import TypeVar, Tuple, List, Set, FrozenSet, overload # noqa
Expand Down Expand Up @@ -1089,26 +1090,23 @@ def __init__(self, seed):
self.seed = seed

def __repr__(self):
return "random.seed(%r)" % (self.seed,)
return "RandomSeeder(%r)" % (self.seed,)


class RandomModule(SearchStrategy):
def do_draw(self, data):
data.can_reproduce_example_from_repr = False
seed = data.draw(integers(0, 2 ** 32 - 1))
state = random.getstate()
random.seed(seed)
cleanup(lambda: random.setstate(state))
if numpy is not None: # pragma: no cover
npstate = numpy.random.get_state()
numpy.random.seed(seed)
cleanup(lambda: numpy.random.set_state(npstate))
seed_all, restore_all = get_seeder_and_restorer(seed)
seed_all()
cleanup(restore_all)
return RandomSeeder(seed)


@cacheable
@defines_strategy
def random_module():
# type: () -> SearchStrategy[RandomSeeder]
"""The Hypothesis engine handles PRNG state for the stdlib and Numpy random
modules internally, always seeding them to zero and restoring the previous
state after the test.
Expand All @@ -1121,10 +1119,21 @@ def random_module():
If ``numpy.random`` is available, that state is also managed.
Examples from these strategy shrink to seeds closer to zero.
You can pass additional ``random.Random`` instances to
``random_module.register(r)`` to have their states seeded and restored
in the same way. All global random states, from e.g. simulation or
scheduling frameworks, should be registered to prevent flaky tests.
Registered Randoms are also zeroed by the engine for any Hypothesis
tests that do not use the ``random_module`` strategy.
"""
return shared(RandomModule(), "hypothesis.strategies.random_module()")


setattr(random_module, "register", register)


@cacheable
@defines_strategy
def builds(
Expand Down
64 changes: 54 additions & 10 deletions hypothesis-python/src/hypothesis/internal/entropy.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,10 +20,60 @@
import contextlib
import random

from hypothesis.internal.compat import integer_types
from hypothesis.internal.validation import check_type

RANDOMS_TO_MANAGE = [random] # type: list

try:
import numpy.random as npr
except ImportError:
npr = None
pass
else:

class NumpyRandomWrapper(object):
"""A shim to remove those darn underscores."""

seed = npr.seed
getstate = npr.get_state
setstate = npr.set_state

RANDOMS_TO_MANAGE.append(NumpyRandomWrapper)


def register(r):
# type: (random.Random) -> None
"""Register the given Random instance for management by Hypothesis."""
check_type(random.Random, r, "r")
if r not in RANDOMS_TO_MANAGE:
RANDOMS_TO_MANAGE.append(r)


def get_seeder_and_restorer(seed=0):
"""Return a pair of functions which respectively seed all and restore
the state of all registered PRNGs.
This is used by the core engine via `deterministic_PRNG`, and by users
via `random_module.register`. We support registration of additional
random.Random instances for simulation or scheduling frameworks which
avoid using the global random state. See e.g. #1709.
"""
assert isinstance(seed, integer_types) and 0 <= seed < 2 ** 32
states = [] # type: list

def seed_all():
assert not states
for r in RANDOMS_TO_MANAGE:
states.append(r.getstate())
r.seed(seed)

def restore_all():
assert len(states) == len(RANDOMS_TO_MANAGE)
for r, state in zip(RANDOMS_TO_MANAGE, states):
r.setstate(state)
del states[:]

return seed_all, restore_all


@contextlib.contextmanager
Expand All @@ -35,15 +85,9 @@ def deterministic_PRNG():
bad idea in principle, and breaks all kinds of independence assumptions
in practice.
"""
_random_state = random.getstate()
random.seed(0)
# These branches are covered by tests/numpy/, not tests/cover/
if npr is not None: # pragma: no cover
_npr_state = npr.get_state()
npr.seed(0)
seed_all, restore_all = get_seeder_and_restorer()
seed_all()
try:
yield
finally:
random.setstate(_random_state)
if npr is not None: # pragma: no cover
npr.set_state(_npr_state)
restore_all()
58 changes: 57 additions & 1 deletion hypothesis-python/tests/cover/test_random_module.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,8 @@

import hypothesis.strategies as st
from hypothesis import given, reporting
from hypothesis.errors import InvalidArgument
from hypothesis.internal import entropy
from tests.common.utils import capture_out


Expand All @@ -36,7 +38,7 @@ def test(r):
assert False

test()
assert "random.seed(0)" in out.getvalue()
assert "RandomSeeder(0)" in out.getvalue()


@given(st.random_module(), st.random_module())
Expand All @@ -47,3 +49,57 @@ def test_seed_random_twice(r, r2):
@given(st.random_module())
def test_does_not_fail_health_check_if_randomness_is_used(r):
random.getrandbits(128)


def test_cannot_register_non_Random():
with pytest.raises(InvalidArgument):
st.random_module.register("not a Random instance")


def test_registering_a_Random_is_idempotent():
r = random.Random()
st.random_module.register(r)
st.random_module.register(r)
assert entropy.RANDOMS_TO_MANAGE.pop() is r
assert r not in entropy.RANDOMS_TO_MANAGE


def test_manages_registered_Random_instance():
r = random.Random()
st.random_module.register(r)
state = r.getstate()
result = []

@given(st.integers())
def inner(x):
v = r.random()
if result:
assert v == result[0]
else:
result.append(v)

inner()
assert state == r.getstate()

entropy.RANDOMS_TO_MANAGE.remove(r)
assert r not in entropy.RANDOMS_TO_MANAGE


def test_registered_Random_is_seeded_by_random_module_strategy():
r = random.Random()
st.random_module.register(r)
state = r.getstate()
results = set()
count = [0]

@given(st.integers())
def inner(x):
results.add(r.random())
count[0] += 1

inner()
assert count[0] > len(results) * 0.9, "too few unique random numbers"
assert state == r.getstate()

entropy.RANDOMS_TO_MANAGE.remove(r)
assert r not in entropy.RANDOMS_TO_MANAGE

0 comments on commit 9697f23

Please sign in to comment.