Skip to content

Commit

Permalink
Add Base.norm, normalize and normalize! for Histogram (#243)
Browse files Browse the repository at this point in the history
* Add Base.norm, normalize and normalize! for Histogram

* Add Base.float for Histogram and support for aux_weights on normalize

* Add tests for histogram norm and normalize

* Clarify description of histogram hormalization modes

* Add histogram normalization mode :none

* Better exceptions and small coding style improvements in hist norm code

Also removed some remnant code in hist norm tests.

* Add proper docstrings for histogram norm, normalize and normalize!

* Add tests for histogram normalize! and normalize with aux weights

* Add new field isdensity to Histogram, refactor histogram code

Enables consistent and idempotent behaviour of normalization, increases
histogram filling performance.

Changes:

* New Histogram field isdensity
* Support for isdensity in constructors, etc., includes refactoring
  of ctor code (removed duplicated code).
* Refactoring of histogram fill code:
    * Removed duplicated code
    * New functions binindex and binvolume
    * Significant performance gain for push!/append!
* Support for fit(Histogram{T}, ...)
* Better structure of histograms tests with test sets

* Remove _tuple_map from Histogram implementation

Better to add this to Base.

* Simplify implementation of _multi_getindex

* Fix float(h::Histogram)

* Handle h.isdensity
* Don't copy more than necessary (as requested by A. Noack)

* Change histogram norm to directly return integral value, not it's norm.

* Extend == and show for Histogram to handle new isdensity field

* Fix normalize! for Histogram

Don't set h.isdensity to true for mode == :none

* Improve numerical precision in implementation of Histogram norm/normalize

* Use _edge_binvolume in implementation of Histogram norm/normlalize

Also add optional result-type argument to binvolume

* Change implementation of float(::Histogram), remove _float_deepcopy

* Minor code pretty-up in push!(::Histogram)
  • Loading branch information
oschulz authored and andreasnoack committed Apr 27, 2017
1 parent 5a7fa11 commit 38c62a1
Show file tree
Hide file tree
Showing 2 changed files with 431 additions and 147 deletions.
316 changes: 245 additions & 71 deletions src/hist.jl
Original file line number Diff line number Diff line change
@@ -1,4 +1,6 @@
import Base: show, ==, push!, append!
using Base.Cartesian

import Base: show, ==, push!, append!, float, norm, normalize, normalize!

# Mechanism for temporary deprecation of default for "closed" (because default
# value has changed). After deprecation is lifed, remove "_check_closed_arg"
Expand All @@ -14,6 +16,17 @@ function _check_closed_arg(closed::Symbol, funcsym)
end


## Fast getindex function for multiple arrays, returns a tuple of array elements
@inline Base.@propagate_inbounds @generated function _multi_getindex(i::Integer, c::AbstractArray...)
N = length(c)
result_expr = Expr(:tuple)
for j in 1:N
push!(result_expr.args, :(c[$j][i]))
end
result_expr
end


## nice-valued ranges for histograms
function histrange{T}(v::AbstractArray{T}, n::Integer, closed::Symbol=:default_left)
closed = _check_closed_arg(closed,:histrange)
Expand Down Expand Up @@ -116,22 +129,24 @@ type Histogram{T<:Real,N,E} <: AbstractHistogram{T,N,E}
edges::E
weights::Array{T,N}
closed::Symbol
isdensity::Bool
function (::Type{Histogram{T,N,E}}){T,N,E}(edges::NTuple{N,AbstractArray},
weights::Array{T,N}, closed::Symbol)
weights::Array{T,N}, closed::Symbol, isdensity::Bool=false)
closed == :right || closed == :left || error("closed must :left or :right")
isdensity && !(T <: AbstractFloat) && error("Density histogram must have float-type weights")
map(x -> length(x)-1,edges) == size(weights) || error("Histogram edge vectors must be 1 longer than corresponding weight dimensions")
new{T,N,E}(edges,weights,closed)
new{T,N,E}(edges,weights,closed,isdensity)
end
end

Histogram{T,N}(edges::NTuple{N,AbstractVector},weights::AbstractArray{T,N},closed::Symbol=:default_left) =
Histogram{T,N,typeof(edges)}(edges,weights,_check_closed_arg(closed,:Histogram))
Histogram{T,N}(edges::NTuple{N,AbstractVector},weights::AbstractArray{T,N},closed::Symbol=:default_left, isdensity::Bool=false) =
Histogram{T,N,typeof(edges)}(edges,weights,_check_closed_arg(closed,:Histogram),isdensity)

Histogram{T,N}(edges::NTuple{N,AbstractVector},::Type{T},closed::Symbol=:default_left) =
Histogram(edges,zeros(T,map(x -> length(x)-1,edges)...),_check_closed_arg(closed,:Histogram))
Histogram{T,N}(edges::NTuple{N,AbstractVector},::Type{T},closed::Symbol=:default_left, isdensity::Bool=false) =
Histogram(edges,zeros(T,map(x -> length(x)-1,edges)...),_check_closed_arg(closed,:Histogram),isdensity)

Histogram{N}(edges::NTuple{N,AbstractVector},closed::Symbol=:default_left) =
Histogram(edges,Int,_check_closed_arg(closed,:Histogram))
Histogram{N}(edges::NTuple{N,AbstractVector},closed::Symbol=:default_left, isdensity::Bool=false) =
Histogram(edges,Int,_check_closed_arg(closed,:Histogram),isdensity)

function show(io::IO, h::AbstractHistogram)
println(io, typeof(h))
Expand All @@ -140,100 +155,259 @@ function show(io::IO, h::AbstractHistogram)
println(io," ",e)
end
println(io,"weights: ",h.weights)
print(io,"closed: ",h.closed)
println(io,"closed: ",h.closed)
print(io,"isdensity: ",h.isdensity)
end

(==)(h1::Histogram,h2::Histogram) = (==)(h1.edges,h2.edges) && (==)(h1.weights,h2.weights) && (==)(h1.closed,h2.closed)
(==)(h1::Histogram,h2::Histogram) = (==)(h1.edges,h2.edges) && (==)(h1.weights,h2.weights) && (==)(h1.closed,h2.closed) && (==)(h1.isdensity,h2.isdensity)

# 1-dimensional
Histogram{T}(edge::AbstractVector, weights::AbstractVector{T}, closed::Symbol=:default_left) =
Histogram((edge,), weights, _check_closed_arg(closed,:Histogram))

Histogram{T}(edge::AbstractVector, ::Type{T}, closed::Symbol=:default_left) =
Histogram(edge, zeros(T,length(edge)-1), _check_closed_arg(closed,:Histogram))
binindex{T,E}(h::AbstractHistogram{T,1,E}, x::Real) = binindex(h, (x,))[1]

Histogram(edge::AbstractVector,closed::Symbol=:default_left) =
Histogram(edge, Int, _check_closed_arg(closed,:Histogram))
binindex{T,N,E}(h::Histogram{T,N,E}, xs::NTuple{N,Real}) =
map((edge, x) -> _edge_binindex(edge, h.closed, x), h.edges, xs)

function push!{T,E}(h::Histogram{T,1,E}, x::Real,w::Real)
i = if h.closed == :right
searchsortedfirst(h.edges[1], x) - 1
@inline function _edge_binindex(edge::AbstractVector, closed::Symbol, x::Real)
if closed == :right
searchsortedfirst(edge, x) - 1
else
searchsortedlast(h.edges[1], x)
end
if 1 <= i <= length(h.weights)
@inbounds h.weights[i] += w
searchsortedlast(edge, x)
end
h
end


binvolume{T,E}(h::AbstractHistogram{T,1,E}, binidx::Integer) = binvolume(h, (binidx,))
binvolume{V,T,E}(::Type{V}, h::AbstractHistogram{T,1,E}, binidx::Integer) = binvolume(V, h, (binidx,))

binvolume{T,N,E}(h::Histogram{T,N,E}, binidx::NTuple{N,Integer}) =
binvolume(promote_type(map(eltype, h.edges)...), h, binidx)

binvolume{V,T,N,E}(::Type{V}, h::Histogram{T,N,E}, binidx::NTuple{N,Integer}) =
prod(map((edge, i) -> _edge_binvolume(V, edge, i), h.edges, binidx))

@inline _edge_binvolume{V}(::Type{V}, edge::AbstractVector, i::Integer) = V(edge[i+1]) - V(edge[i])
@inline _edge_binvolume{V}(::Type{V}, edge::Range, i::Integer) = V(step(edge))
@inline _edge_binvolume(edge::AbstractVector, i::Integer) = _edge_binvolume(eltype(edge), edge, i)


# 1-dimensional

Histogram{T}(edge::AbstractVector, weights::AbstractVector{T}, closed::Symbol=:default_left, isdensity::Bool=false) =
Histogram((edge,), weights, closed, isdensity)

Histogram{T}(edge::AbstractVector, ::Type{T}, closed::Symbol=:default_left, isdensity::Bool=false) =
Histogram((edge,), T, closed, isdensity)

Histogram(edge::AbstractVector, closed::Symbol=:default_left, isdensity::Bool=false) =
Histogram((edge,), closed, isdensity)


push!{T,E}(h::AbstractHistogram{T,1,E}, x::Real, w::Real) = push!(h, (x,), w)
push!{T,E}(h::AbstractHistogram{T,1,E}, x::Real) = push!(h,x,one(T))
append!{T}(h::AbstractHistogram{T,1}, v::AbstractVector) = append!(h, (v,))
append!{T}(h::AbstractHistogram{T,1}, v::AbstractVector, wv::Union{AbstractVector,WeightVec}) = append!(h, (v,), wv)

function append!{T}(h::AbstractHistogram{T,1}, v::AbstractVector)
for x in v
push!(h,x)
end
h
end
function append!{T}(h::AbstractHistogram{T,1}, v::AbstractVector,wv::WeightVec)
for (x,w) in zip(v,wv.values)
push!(h,x,w)
end
h
end

fit(::Type{Histogram},v::AbstractVector, edg::AbstractVector; closed::Symbol=:default_left) =
append!(Histogram(edg,_check_closed_arg(closed,:fit)), v)
fit(::Type{Histogram},v::AbstractVector; closed::Symbol=:default_left, nbins=sturges(length(v))) = begin
closed = _check_closed_arg(closed,:fit)
fit(Histogram, v, histrange(v,nbins,closed); closed=closed)
end
fit{T}(::Type{Histogram{T}},v::AbstractVector, edg::AbstractVector; closed::Symbol=:default_left) =
fit(Histogram{T},(v,), (edg,), closed=closed)
fit{T}(::Type{Histogram{T}},v::AbstractVector; closed::Symbol=:default_left, nbins=sturges(length(v))) =
fit(Histogram{T},(v,); closed=closed, nbins=nbins)
fit{T}(::Type{Histogram{T}},v::AbstractVector, wv::WeightVec, edg::AbstractVector; closed::Symbol=:default_left) =
fit(Histogram{T},(v,), wv, (edg,), closed=closed)
fit{T}(::Type{Histogram{T}},v::AbstractVector, wv::WeightVec; closed::Symbol=:default_left, nbins=sturges(length(v))) =
fit(Histogram{T}, (v,), wv; closed=closed, nbins=nbins)

fit{W}(::Type{Histogram}, v::AbstractVector, wv::WeightVec{W}, args...; kwargs...) = fit(Histogram{W}, v, wv, args...; kwargs...)

fit{W}(::Type{Histogram},v::AbstractVector, wv::WeightVec{W}, edg::AbstractVector; closed::Symbol=:default_left) =
append!(Histogram(edg,W,_check_closed_arg(closed,:fit)), v, wv)
fit(::Type{Histogram},v::AbstractVector, wv::WeightVec; closed::Symbol=:default_left, nbins=sturges(length(v))) = begin
closed = _check_closed_arg(closed,:fit)
fit(Histogram, v, wv, histrange(v,nbins,closed); closed=closed)
end

# N-dimensional

function push!{T,N}(h::Histogram{T,N},xs::NTuple{N,Real},w::Real)
is = if h.closed == :right
map((edge, x) -> searchsortedfirst(edge,x) - 1, h.edges, xs)
else
map(searchsortedlast, h.edges, xs)
h.isdensity && error("Density histogram must have float-type weights")
idx = binindex(h, xs)
if checkbounds(Bool, h.weights, idx...)
@inbounds h.weights[idx...] += w
end
try
h.weights[is...] += w
catch e
isa(e,BoundsError) || rethrow(e)
h
end

function push!{T<:AbstractFloat,N}(h::Histogram{T,N},xs::NTuple{N,Real},w::Real)
idx = binindex(h, xs)
if checkbounds(Bool, h.weights, idx...)
@inbounds h.weights[idx...] += h.isdensity ? w / binvolume(h, idx) : w
end
h
end

push!{T,N}(h::AbstractHistogram{T,N},xs::NTuple{N,Real}) = push!(h,xs,one(T))


function append!{T,N}(h::AbstractHistogram{T,N}, vs::NTuple{N,AbstractVector})
for xs in zip(vs...)
push!(h,xs)
@inbounds for i in eachindex(vs...)
xs = _multi_getindex(i, vs...)
push!(h, xs, one(T))
end
h
end
function append!{T,N}(h::AbstractHistogram{T,N}, vs::NTuple{N,AbstractVector},wv::WeightVec)
for (xs,w) in zip(zip(vs...),wv.values)
push!(h,xs,w)
function append!{T,N}(h::AbstractHistogram{T,N}, vs::NTuple{N,AbstractVector}, wv::AbstractVector)
@inbounds for i in eachindex(wv, vs...)
xs = _multi_getindex(i, vs...)
push!(h, xs, wv[i])
end
h
end
append!{T,N}(h::AbstractHistogram{T,N}, vs::NTuple{N,AbstractVector}, wv::WeightVec) = append!(h, vs, values(wv))

fit{N}(::Type{Histogram}, vs::NTuple{N,AbstractVector}, edges::NTuple{N,AbstractVector}; closed::Symbol=:default_left) =
append!(Histogram(edges,_check_closed_arg(closed,:fit)), vs)
fit{N}(::Type{Histogram}, vs::NTuple{N,AbstractVector}; closed::Symbol=:default_left, nbins=sturges(length(vs[1]))) = begin

fit{T,N}(::Type{Histogram{T}}, vs::NTuple{N,AbstractVector}, edges::NTuple{N,AbstractVector}; closed::Symbol=:default_left) =
append!(Histogram(edges, T, _check_closed_arg(closed,:fit), false), vs)

fit{T,N}(::Type{Histogram{T}}, vs::NTuple{N,AbstractVector}; closed::Symbol=:default_left, isdensity::Bool=false, nbins=sturges(length(vs[1]))) = begin
closed = _check_closed_arg(closed,:fit)
fit(Histogram, vs, histrange(vs,nbins,closed); closed=closed)
fit(Histogram{T}, vs, histrange(vs,nbins,closed); closed=closed)
end

fit{N,W}(::Type{Histogram}, vs::NTuple{N,AbstractVector}, wv::WeightVec{W}, edges::NTuple{N,AbstractVector}; closed::Symbol=:default_left) =
append!(Histogram(edges,W,_check_closed_arg(closed,:fit)), vs, wv)
fit{N}(::Type{Histogram},vs::NTuple{N,AbstractVector}, wv::WeightVec; closed::Symbol=:default_left, nbins=sturges(length(vs[1]))) = begin
fit{T,N,W}(::Type{Histogram{T}}, vs::NTuple{N,AbstractVector}, wv::WeightVec{W}, edges::NTuple{N,AbstractVector}; closed::Symbol=:default_left) =
append!(Histogram(edges, T, _check_closed_arg(closed,:fit), false), vs, wv)

fit{T,N}(::Type{Histogram{T}}, vs::NTuple{N,AbstractVector}, wv::WeightVec; closed::Symbol=:default_left, isdensity::Bool=false, nbins=sturges(length(vs[1]))) = begin
closed = _check_closed_arg(closed,:fit)
fit(Histogram, vs, wv, histrange(vs,nbins,closed); closed=closed)
fit(Histogram{T}, vs, wv, histrange(vs,nbins,closed); closed=closed)
end

fit(::Type{Histogram}, args...; kwargs...) = fit(Histogram{Int}, args...; kwargs...)
fit{N,W}(::Type{Histogram}, vs::NTuple{N,AbstractVector}, wv::WeightVec{W}, args...; kwargs...) = fit(Histogram{W}, vs, wv, args...; kwargs...)


# Get a suitable high-precision type for the norm of a histogram.
@generated function norm_type{T, N, E}(h::Histogram{T, N, E})
args = [:( eltype(edges[$d]) ) for d = 1:N]
quote
edges = h.edges
norm_type(promote_type(T, $(args...)))
end
end

norm_type{T<:Integer}(::Type{T}) = promote_type(T, Int64)
norm_type{T<:AbstractFloat}(::Type{T}) = promote_type(T, Float64)


"""
norm(h::Histogram)
Calculate the norm of histogram `h` as the absolute value of its integral.
"""
@generated function norm{T, N, E}(h::Histogram{T, N, E})
quote
edges = h.edges
weights = h.weights
SumT = norm_type(h)
v_0 = 1
s_0 = zero(SumT)
@inbounds @nloops(
$N, i, weights,
d -> begin
v_{$N-d+1} = v_{$N-d} * _edge_binvolume(SumT, edges[d], i_d)
s_{$N-d+1} = zero(SumT)
end,
d -> begin
s_{$N-d} += s_{$N-d+1}
end,
begin
$(Symbol("s_$(N)")) += (@nref $N weights i) * $(Symbol("v_$N"))
end
)
s_0
end
end


float{T<:AbstractFloat, N, E}(h::Histogram{T, N, E}) = h

float{T, N, E}(h::Histogram{T, N, E}) = Histogram(h.edges, float(h.weights), h.closed, h.isdensity)



"""
normalize!{T<:AbstractFloat, N, E}(h::Histogram{T, N, E}, aux_weights::Array{T,N}...; mode::Symbol = :pdf)
Normalize the histogram `h` and optionally scale one or more auxiliary weight
arrays appropriately. See description of `normalize` for details. Returns `h`.
"""
@generated function normalize!{T<:AbstractFloat, N, E}(h::Histogram{T, N, E}, aux_weights::Array{T,N}...; mode::Symbol = :pdf)
quote
edges = h.edges
weights = h.weights

for A in aux_weights
(size(A) != size(weights)) && throw(DimensionMismatch("aux_weights must have same size as histogram weights"))
end

if mode == :none
# nothing to do
elseif mode == :pdf || mode == :density
if h.isdensity
if mode == :pdf
# histogram already represents a density, just divide weights by norm
s = 1/norm(h)
weights .*= s
for A in aux_weights
A .*= s
end
else
# histogram already represents a density, nothing to do
end
else
# Divide weights by bin volume, for :pdf also divide by sum of weights
SumT = norm_type(h)
vs_0 = (mode == :pdf) ? sum(SumT(x) for x in weights) : one(SumT)
@inbounds @nloops $N i weights d->(vs_{$N-d+1} = vs_{$N-d} * _edge_binvolume(SumT, edges[d], i_d)) begin
(@nref $N weights i) /= $(Symbol("vs_$N"))
for A in aux_weights
(@nref $N A i) /= $(Symbol("vs_$N"))
end
end
end
h.isdensity = true
else mode != :pdf && mode != :density
throw(ArgumentError("Normalization mode must be :pdf, :density or :none"))
end
h
end
end


"""
normalize{T, N, E}(h::Histogram{T, N, E}; mode::Symbol = :pdf)
Normalize the histogram `h`.
Valid values for `mode` are:
* `:pdf`: Normalize by sum of weights and bin sizes. Resulting histogram
has norm 1 and represents a PDF.
* `:density`: Normalize by bin sizes only. Resulting histogram represents
count density of input and does not have norm 1. Will not modify the
histogram if it already represents a density (`h.isdensity == 1`).
* `:none`: Leaves histogram unchanged. Useful to simplify code that has to
conditionally apply different modes of normalization.
"""
normalize{T, N, E}(h::Histogram{T, N, E}; mode::Symbol = :pdf) =
normalize!(deepcopy(float(h)), mode = mode)


"""
normalize{T, N, E}(h::Histogram{T, N, E}, aux_weights::Array{T,N}...; mode::Symbol = :pdf)
Normalize the histogram `h` and rescales one or more auxiliary weight arrays
at the same time (`aux_weights` may, e.g., contain estimated statistical
uncertainties). The values of the auxiliary arrays are scaled by the same
factor as the corresponding histogram weight values. Returns a tuple of the
normalized histogram and scaled auxiliary weights.
"""
function normalize{T, N, E}(h::Histogram{T, N, E}, aux_weights::Array{T,N}...; mode::Symbol = :pdf)
h_fltcp = deepcopy(float(h))
aux_weights_fltcp = map(x -> deepcopy(float(x)), aux_weights)
normalize!(h_fltcp, aux_weights_fltcp..., mode = mode)
(h_fltcp, aux_weights_fltcp...)
end
Loading

0 comments on commit 38c62a1

Please sign in to comment.