A survey on deep learning image classification technics based on PyTorch and PyTorch lightning Slices URL
This is a repository for the final project of MSDM5055 about applying image classification techniques in CIFAR-10 dataset with PyTorch.
- Data Augmentation: Cifar-10 generation with conditional diffusion model
- PyTorch Lightning
- Effective Training Techniques
- Accumulate Gradients: GradientAccumulationScheduler
- Gradient Clipping: gradient_clip_val
- Stochastic Weight Averaging: StochasticWeightAveraging
- Batch Size Finder: tuner.scale_batch_size(model, mode="power")
- Learning Rate Finder: tuner.lr_find(model)
- Effective Training Techniques
- Graph Attention Block
- Visualization with captum
- Download Google Drive Desktop.
- Create a folder in your Google Drive Desktop.
- Clone this repository to the folder.
- Open runcodes.ipynb in Colab, which will guide you to download the dependencies and mount the Google Drive.
- PyTorch Lightning: https://lightning.ai/docs/pytorch/stable/
- PyTorch Lightning CIFAR-10: https://lightning.ai/docs/pytorch/stable/notebooks/lightning_examples/cifar10-baseline.html
- Training tricks: https://lightning.ai/docs/pytorch/stable/advanced/training_tricks.html
- Graph Attention: https://www.baeldung.com/cs/graph-attention-networks
- Diffusion Model:https://lilianweng.github.io/posts/2021-07-11-diffusion-models/#:~:text=Diffusion%20models%20are%20inspired%20by,data%20samples%20from%20the%20noise
- Cifar-10 Generation with Diffusion Model:https://github.com/zoubohao/DenoisingDiffusionProbabilityModel-ddpm-
- Axiomatic Attribution for Deep Networks:https://arxiv.org/pdf/1703.01365.pdf