Skip to content

Recommend techniques on pytorch img classifiction, including data augmentation(GAN and DDPM), pytorch lightning, attention, wandb and captum (for visual).

License

Notifications You must be signed in to change notification settings

LucaJiang/PyTorch_ImageClassifiction_Techniques

Repository files navigation

PyTorch_ImageClassifiction_Techniques

A survey on deep learning image classification technics based on PyTorch and PyTorch lightning Slices URL

Introduction

This is a repository for the final project of MSDM5055 about applying image classification techniques in CIFAR-10 dataset with PyTorch. Open In Colab

Features

  • Data Augmentation: Cifar-10 generation with conditional diffusion model
  • PyTorch Lightning
    • Effective Training Techniques
      • Accumulate Gradients: GradientAccumulationScheduler
      • Gradient Clipping: gradient_clip_val
      • Stochastic Weight Averaging: StochasticWeightAveraging
      • Batch Size Finder: tuner.scale_batch_size(model, mode="power")
      • Learning Rate Finder: tuner.lr_find(model)
  • Graph Attention Block
  • Visualization with captum

Run in Colab

  1. Download Google Drive Desktop.
  2. Create a folder in your Google Drive Desktop.
  3. Clone this repository to the folder.
  4. Open In ColabOpen runcodes.ipynb in Colab, which will guide you to download the dependencies and mount the Google Drive.

Reference

  1. PyTorch Lightning: https://lightning.ai/docs/pytorch/stable/
  2. PyTorch Lightning CIFAR-10: https://lightning.ai/docs/pytorch/stable/notebooks/lightning_examples/cifar10-baseline.html
  3. Training tricks: https://lightning.ai/docs/pytorch/stable/advanced/training_tricks.html
  4. Graph Attention: https://www.baeldung.com/cs/graph-attention-networks
  5. Diffusion Model:https://lilianweng.github.io/posts/2021-07-11-diffusion-models/#:~:text=Diffusion%20models%20are%20inspired%20by,data%20samples%20from%20the%20noise
  6. Cifar-10 Generation with Diffusion Model:https://github.com/zoubohao/DenoisingDiffusionProbabilityModel-ddpm-
  7. Axiomatic Attribution for Deep Networks:https://arxiv.org/pdf/1703.01365.pdf

About

Recommend techniques on pytorch img classifiction, including data augmentation(GAN and DDPM), pytorch lightning, attention, wandb and captum (for visual).

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •