Skip to content

Implementation of the paper A Learned Representation for Artistic Style (Conditional instance normalization)

License

Notifications You must be signed in to change notification settings

MingtaoGuo/Conditional-Instance-Norm-for-n-Style-Transfer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Conditional-Instance-Norm-for-n-Style-Transfer

Implementation of the paper A Learned Representation for Artistic Style

Introduction

Simply implementing the paper A Learned Representation for Artistic Style (Conditional instance normalization)

def conditional_instance_norm(x, scope_bn, y1=None, y2=None, alpha=1):
    mean, var = tf.nn.moments(x, axes=[1, 2], keep_dims=True)
    if y1==None:
        beta = tf.get_variable(name=scope_bn + 'beta', shape=[x.shape[-1]], initializer=tf.constant_initializer([0.]), trainable=True)  
        gamma = tf.get_variable(name=scope_bn + 'gamma', shape=[x.shape[-1]], initializer=tf.constant_initializer([1.]), trainable=True) 
    else:
        beta = tf.get_variable(name=scope_bn+'beta', shape=[y1.shape[-1], x.shape[-1]], initializer=tf.constant_initializer([0.]), trainable=True) # label_nums x C
        gamma = tf.get_variable(name=scope_bn+'gamma', shape=[y1.shape[-1], x.shape[-1]], initializer=tf.constant_initializer([1.]), trainable=True) # label_nums x C
        beta1 = tf.matmul(y1, beta)
        gamma1 = tf.matmul(y1, gamma)
        beta2 = tf.matmul(y2, beta)
        gamma2 = tf.matmul(y2, gamma)
        beta = alpha * beta1 + (1. - alpha) * beta2
        gamma = alpha * gamma1 + (1. - alpha) * gamma2
    x = tf.nn.batch_normalization(x, mean, var, beta, gamma, 1e-10)
    return x

How to use

  1. Download the dataset MSCOCO, and unzip the dataset to the folder 'MSCOCO'
├── imgs
├── results
├── save_imgs
├── save_para
├── style_imgs
├── vgg_para
├── MSCOCO
     ├── COCO_train2014_000000000009.jpg
     ├── COCO_train2014_000000000025.jpg
     ├── COCO_train2014_000000000030.jpg
     ├── COCO_train2014_000000000034.jpg
     ├── COCO_train2014_000000000036.jpg
     ├── COCO_train2014_000000000049.jpg
     ...
  1. Download the vgg16.npy, and put it into the folder 'vgg_para'
  2. Execute the python file 'main.py'

Requirement

  • python3.5
  • tensorflow1.4.0
  • scipy
  • numpy
  • pillow

Results

Style = alpha * style2 + (1 - alpha) * style1

Content Style1 Style2 Result
Content Style1 Style2 Result
Content Style1 Style2
alpha=0 alpha=0.6 alpha=1.0
Content Style1 Style2
alpha=0 alpha=0.6 alpha=1.0
Content Style1 Style2
alpha=0 alpha=0.2 alpha=0.4 alpha=0.6 alpha=0.8 alpha=1.0
Content style result

About

Implementation of the paper A Learned Representation for Artistic Style (Conditional instance normalization)

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages