-
Notifications
You must be signed in to change notification settings - Fork 468
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Other] Refactor js submodule (#415)
* Refactor js submodule * Remove change-log * Update ocr module * Update ocr-detection module * Update ocr-detection module * Remove change-log
- Loading branch information
1 parent
30971cf
commit f2619b0
Showing
273 changed files
with
15,086 additions
and
5,477 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,172 @@ | ||
# Web Demo介绍 | ||
|
||
- [简介](#0) | ||
- [1. 快速开始](#1) | ||
- [2. npm包调用](#2) | ||
- [3. 模型替换](#3) | ||
- [4. 自定义前后处理参数](#4) | ||
- [5. 其他](#5) | ||
|
||
<a name="0"></a> | ||
## 简介 | ||
|
||
本项目基于[Paddle.js](https://github.com/PaddlePaddle/Paddle.js)在浏览器中实现目标检测,人像分割,OCR,物品分类等计算机视觉任务。 | ||
|
||
|
||
|demo名称|web demo组件|源码目录|npm包| | ||
|-|-|-|-| | ||
|人脸检测|[FaceDetection](./web_demo/src/pages/cv/detection/FaceDetection/)| [facedetect](./package/packages/paddlejs-models/facedetect)|[@paddle-js-models/facedetect](https://www.npmjs.com/package/@paddle-js-models/facedetect)| | ||
|螺丝钉检测|[ScrewDetection](./web_demo/src/pages/cv/detection/ScrewDetection)| [detect](./package/packages/paddlejs-models/detect)|[@paddle-js-models/detect](https://www.npmjs.com/package/@paddle-js-models/detect)| | ||
|人像分割背景替换|[HumanSeg](./web_demo/src/pages/cv/segmentation/HumanSeg)|[humanseg](./package/packages/paddlejs-models/humanseg)|[@paddle-js-models/humanseg](https://www.npmjs.com/package/@paddle-js-models/humanseg)| | ||
|手势识别AI猜丁壳|[GestureRecognition](./web_demo/src/pages/cv/recognition/GestureRecognition)|[gesture](./package/packages/paddlejs-models/gesture)|[@paddle-js-models/gesture](https://www.npmjs.com/package/@paddle-js-models/gesture)| | ||
|1000种物品识别|[ItemIdentification](./web_demo/src/pages/cv/recognition/ItemIdentification)|[mobilenet](./package/packages/paddlejs-models/mobilenet)|[@paddle-js-models/mobilenet](https://www.npmjs.com/package/@paddle-js-models/mobilenet)| | ||
|文本检测|[TextDetection](./web_demo/src/pages/cv/ocr/TextDetection)|[ocrdetection](./package/packages/paddlejs-models/ocrdetection)|[@paddle-js-models/ocrdet](https://www.npmjs.com/package/@paddle-js-models/ocrdet)| | ||
|文本识别|[TextRecognition](./web_demo/src/pages/cv/ocr/TextRecognition)|[ocr](./package/packages/paddlejs-models/ocr)|[@paddle-js-models/ocr](https://www.npmjs.com/package/@paddle-js-models/ocr)| | ||
|
||
|
||
<a name="1"></a> | ||
## 1. 快速开始 | ||
|
||
本节介绍如何在浏览器中直接运行官方demo。 | ||
|
||
**1. 安装Node.js** | ||
|
||
从`Node.js`官网https://nodejs.org/en/download/ 下载适合自己平台的`Node.js`安装包并安装。 | ||
|
||
**2. 安装demo依赖并启动** | ||
在`./web_demo`目录下执行如下指令: | ||
|
||
``` | ||
# 安装依赖 | ||
npm install | ||
# 启动demo | ||
npm run dev | ||
``` | ||
|
||
在浏览器中打开网址 `http://localhost:5173/main/index.html` 即可快速体验在浏览器中运行计算机视觉任务。 | ||
|
||
![22416f4a3e7d63f950b838be3cd11e80](https://user-images.githubusercontent.com/26592129/196685868-93ab53bd-cb2e-44ff-a56b-50c1781b8679.jpg) | ||
|
||
<a name="2"></a> | ||
## 2. npm包调用 | ||
|
||
本节介绍npm包的使用方式,每个demo均提供简单易用的接口,用户只需初始化上传图片即可获得结果,使用步骤如下: | ||
1. 调用模块 | ||
2. 初始化模型 | ||
3. 传入输入,执行预测 | ||
|
||
以 OCR 为例,在前端项目中,`@paddle-js-models/ocr`包的使用方式如下: | ||
|
||
``` | ||
// 1. 调用ocr模块 | ||
import * as ocr from '@paddle-js-models/ocr'; | ||
// 2. 初始化ocr模型 | ||
await ocr.init(); | ||
// 3. 传入HTMLImageElement类型的图像作为输入并获得结果 | ||
const res = await ocr.recognize(img); | ||
// 打印OCR模型得到的文本坐标以及文本内容 | ||
console.log(res.text); | ||
console.log(res.points); | ||
``` | ||
|
||
<a name="3"></a> | ||
## 3. 模型替换 | ||
|
||
由于前端环境和计算资源限制,在前端部署深度学习模型时,我们对模型的性能有着更严格的要求,简单来说,模型需要足够轻量化。理论上模型的输入shape越小、模型大小越小,则对应的模型的flops越小,在前端运行也能更流畅。经验总结,使用`Paddle.js`部署的模型存储尽量不超过*5M*,实际情况根据硬件和计算资源情况决定。 | ||
|
||
在实际应用中,常常根据垂类的场景定制化模型,官方的demo支持修改传入参数替换模型。 | ||
|
||
以OCR demo为例,[ocr.init()函数](https://github.com/PaddlePaddle/FastDeploy/tree/develop/examples/application/js/package/packages/paddlejs-models/ocr/src/index.ts#L52)中,包含默认初始化的模型链接,如果要替换模型参考下述步骤。 | ||
|
||
步骤1:将模型转成js格式: | ||
``` | ||
# 安装paddlejsconverter | ||
pip3 install paddlejsconverter | ||
# 转换模型格式,输入模型为inference模型 | ||
paddlejsconverter --modelPath=./inference.pdmodel --paramPath=./inference.pdiparams --outputDir=./ --useGPUOpt=True | ||
# 注意:useGPUOpt 选项默认不开启,如果模型用在 gpu backend(webgl/webgpu),则开启 useGPUOpt,如果模型运行在(wasm/plain js)则不要开启。 | ||
``` | ||
|
||
导出成功后,本地目录下会出现 `model.json chunk_1.dat`等文件,分别是对应js模型的网络结构、模型参数二进制文件。 | ||
|
||
步骤2:将导出的js模型上传到支持跨域访问的服务器,服务器的CORS配置参考下图: | ||
![image](https://user-images.githubusercontent.com/26592129/196612669-5233137a-969c-49eb-b8c7-71bef5088686.png) | ||
|
||
|
||
步骤3:修改代码替换默认的模型。以OCR demo为例,修改OCR web demo中[模型初始化代码](https://github.com/PaddlePaddle/FastDeploy/tree/develop/examples/application/js/web_demo/src/pages/cv/ocr/TextRecognition/TextRecognition.vue#L64),即 | ||
|
||
``` | ||
await ocr.init(); | ||
修改为: | ||
await ocr.init({modelPath: "https://js-models.bj.bcebos.com/PaddleOCR/PP-OCRv3/ch_PP-OCRv3_det_infer_js_960/model.json"}); # 第一个参数传入新的文本检测字典类型参数 | ||
``` | ||
|
||
重新在demo目录下执行下述命令,即可体验新的模型效果。 | ||
``` | ||
npm run dev | ||
``` | ||
|
||
<a name="4"></a> | ||
## 4. 自定义前后处理参数 | ||
|
||
**自定义前处理参数** | ||
|
||
在不同计算机视觉任务中,不同的模型可能有不同的预处理参数,比如mean,std,keep_ratio等参数,替换模型后也需要对预处理参数进行修改。paddle.js发布的npm包中提供了自定义预处理参数的简单方案。只需要在调用模型初始化函数时,传入自定义的参数即可。 | ||
|
||
``` | ||
# 默认参数初始化 | ||
await model.init(); | ||
自定义参数初始化 | ||
const Config = {mean: [0.5, 0.5, 0.5], std: [0.5, 0.5, 0.5], keepratio: false}; | ||
await model.init(Config); | ||
``` | ||
|
||
以OCR文本检测demo为例,修改模型前处理的mean和std参数,只需要在模型初始化时传入自定义的mean和std参数。 | ||
``` | ||
await ocr.init(); | ||
修改为: | ||
const detConfig = {mean: [0.5, 0.5, 0.5], std: [0.5, 0.5, 0.5]}; | ||
await ocr.init(detConfig); # 第一个参数传入新的文本检测模型链接 | ||
``` | ||
|
||
**自定义后处理参数** | ||
|
||
同理,paddle.js发布的npm包也提供了后处理参数的自定义方案。 | ||
|
||
``` | ||
# 默认参数运行 | ||
await model.predict(); | ||
# 自定义后处理参数 | ||
const postConfig = {thresh: 0.5}; | ||
await model.predict(Config); | ||
``` | ||
|
||
以OCR文本检测 demo为例,修改文本检测后处理的参数实现扩大文本检测框的效果,修改OCR web demo中执行[模型预测代码](https://github.com/PaddlePaddle/FastDeploy/tree/develop/examples/application/web_demo/src/pages/cv/ocr/TextRecognition/TextRecognition.vue#L99),即: | ||
|
||
``` | ||
const res = await ocr.recognize(img, { canvas: canvas.value }); | ||
修改为: | ||
// 定义超参数,将unclip_ratio参数从1.5 增大为3.5 | ||
const detConfig = {shape: 960, thresh: 0.3, box_thresh: 0.6, unclip_ratio:3.5}; | ||
const res = await ocr.recognize(img, { canvas: canvas.value }, detConfig); | ||
``` | ||
|
||
注:不同的任务有不同的后处理参数,详细参数参考npm包中的API。 | ||
|
||
<a name="5"></a> | ||
## 5. 其他 | ||
|
||
`Paddle.js`转换后的模型不仅支持浏览器中使用,也可以在百度小程序和微信小程序环境下运行。 | ||
|
||
|名称|目录| | ||
|-|-| | ||
|OCR文本检测| [ocrdetecXcx](./mini_program/ocrdetectXcx/) | | ||
|OCR文本识别| [ocrXcx](./mini_program/ocrXcx/) | | ||
|目标检测| coming soon | | ||
|图像分割| coming soon | | ||
|物品分类| coming soon | |
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,41 @@ | ||
# Paddle.js Model Module介绍 | ||
|
||
该部分是基于 Paddle.js 进行开发的模型库,主要提供 Web 端可直接引入使用模型的能力。 | ||
|
||
| demo名称 | 源码目录 | npm包 | | ||
| ---------------- | ------------------------------------------------------ | ------------------------------------------------------------ | | ||
| 人脸检测 | [facedetect](./packages/paddlejs-models/facedetect) | [@paddle-js-models/facedetect](https://www.npmjs.com/package/@paddle-js-models/facedetect) | | ||
| 螺丝钉检测 | [detect](./packages/paddlejs-models/detect) | [@paddle-js-models/detect](https://www.npmjs.com/package/@paddle-js-models/detect) | | ||
| 人像分割背景替换 | [humanseg](./packages/paddlejs-models/humanseg) | [@paddle-js-models/humanseg](https://www.npmjs.com/package/@paddle-js-models/humanseg) | | ||
| 手势识别AI猜丁壳 | [gesture](./packages/paddlejs-models/gesture) | [@paddle-js-models/gesture](https://www.npmjs.com/package/@paddle-js-models/gesture) | | ||
| 1000种物品识别 | [mobilenet](./packages/paddlejs-models/mobilenet) | [@paddle-js-models/mobilenet](https://www.npmjs.com/package/@paddle-js-models/mobilenet) | | ||
| 文本检测 | [ocrdetection](./packages/paddlejs-models/ocrdetection) | [@paddle-js-models/ocrdet](https://www.npmjs.com/package/@paddle-js-models/ocrdet) | | ||
| 文本识别 | [ocr](./packages/paddlejs-models/ocr) | [@paddle-js-models/ocr](https://www.npmjs.com/package/@paddle-js-models/ocr) | | ||
|
||
## 开发使用 | ||
|
||
该部分是使用 `pnpm` 搭建的 Menorepo | ||
|
||
### 安装依赖 | ||
|
||
```sh | ||
pnpm i | ||
``` | ||
|
||
### 开发 | ||
参考 Package.json 使用 `yalc` 进行开发测试。 | ||
|
||
```sh | ||
pnpm run dev:xxx | ||
``` | ||
|
||
### 整体简介 | ||
|
||
1. 使用 rollup 一次性打包生成 commonjs 和 es 规范的代码;同时具有可扩展性;目前由于依赖的cv库有些问题;就没有配置umd打包。 | ||
2. 打包时基于 api-extractor 实现 d.ts 文件生成,实现支持 ts 引入生成我们的包 | ||
3. 基于 jest 支持测试并显示测试相关覆盖率等 | ||
4. 基于 ts 和 eslint 维护代码风格,保证代码更好开发 | ||
5. 基于 conventional-changelog-cli 实现自定义关键词生成对应生成changelog | ||
6. 基于 yalc 实现本地打包开发测试 | ||
|
||
|
Oops, something went wrong.