Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【Hackathon No.166】Paddle3D目标检测结果可视化 #272

Open
wants to merge 6 commits into
base: develop
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
97 changes: 97 additions & 0 deletions demo/bev_demo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
import argparse
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

add Copyright

import os
import numpy as np

from paddle3d.apis.infer import Infer
from paddle3d.apis.config import Config
from paddle3d.slim import get_qat_config
from paddle3d.utils.checkpoint import load_pretrained_model


def parse_args():
"""
"""
parser = argparse.ArgumentParser(description='Model evaluation')
# params of training
parser.add_argument(
"--config", dest="cfg", help="The config file.", default=None, type=str)
parser.add_argument(
'--batch_size',
dest='batch_size',
help='Mini batch size of one gpu or cpu',
type=int,
default=None)
parser.add_argument(
'--model',
dest='model',
help='pretrained parameters of the model',
type=str,
default=None)
parser.add_argument(
'--num_workers',
dest='num_workers',
help='Num workers for data loader',
type=int,
default=2)
parser.add_argument(
'--quant_config',
dest='quant_config',
help='Config for quant model.',
default=None,
type=str)

return parser.parse_args()


def worker_init_fn(worker_id):
np.random.seed(1024)


def main(args):
"""
"""
if args.cfg is None:
raise RuntimeError("No configuration file specified!")

if not os.path.exists(args.cfg):
raise RuntimeError("Config file `{}` does not exist!".format(args.cfg))

cfg = Config(path=args.cfg, batch_size=args.batch_size)
print(args.cfg)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

print --> logger

if cfg.val_dataset is None:
raise RuntimeError(
'The validation dataset is not specified in the configuration file!'
)
elif len(cfg.val_dataset) == 0:
raise ValueError(
'The length of validation dataset is 0. Please check if your dataset is valid!'
)

dic = cfg.to_dict()
batch_size = dic.pop('batch_size')
dic.update({
'dataloader_fn': {
'batch_size': batch_size,
'num_workers': args.num_workers,
'worker_init_fn': worker_init_fn
}
})

if args.quant_config:
quant_config = get_qat_config(args.quant_config)
cfg.model.build_slim_model(quant_config['quant_config'])

if args.model is not None:
load_pretrained_model(cfg.model, args.model)
dic['checkpoint'] = None
dic['resume'] = False
else:
dic['resume'] = True

infer = Infer(**dic)
infer.infer('bev')


if __name__ == '__main__':
args = parse_args()
main(args)
174 changes: 174 additions & 0 deletions demo/bev_demo_deploy.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,174 @@
import argparse
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

add Copyright

import numpy as np
import paddle
from paddle.inference import Config, create_predictor
from paddle3d.ops.iou3d_nms_cuda import nms_gpu
from utils import preprocess, Calibration, show_bev_with_boxes
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

from utils --> from .utils



def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_file",
type=str,
help="Model filename, Specify this when your model is a combined model.",
required=True)
parser.add_argument(
"--params_file",
type=str,
help=
"Parameter filename, Specify this when your model is a combined model.",
required=True)
parser.add_argument(
'--lidar_file', type=str, help='The lidar path.', required=True)
parser.add_argument(
'--calib_file', type=str, help='The lidar path.', required=True)
parser.add_argument(
"--num_point_dim",
type=int,
default=4,
help="Dimension of a point in the lidar file.")
parser.add_argument(
"--point_cloud_range",
dest='point_cloud_range',
nargs='+',
help="Range of point cloud for voxelize operation.",
type=float,
default=None)
parser.add_argument(
"--voxel_size",
dest='voxel_size',
nargs='+',
help="Size of voxels for voxelize operation.",
type=float,
default=None)
parser.add_argument(
"--max_points_in_voxel",
type=int,
default=100,
help="Maximum number of points in a voxel.")
parser.add_argument(
"--max_voxel_num",
type=int,
default=12000,
help="Maximum number of voxels.")
parser.add_argument("--gpu_id", type=int, default=0, help="GPU card id.")
parser.add_argument(
"--use_trt",
type=int,
default=0,
help="Whether to use tensorrt to accelerate when using gpu.")
parser.add_argument(
"--trt_precision",
type=int,
default=0,
help="Precision type of tensorrt, 0: kFloat32, 1: kHalf.")
parser.add_argument(
"--trt_use_static",
type=int,
default=0,
help="Whether to load the tensorrt graph optimization from a disk path."
)
parser.add_argument(
"--trt_static_dir",
type=str,
help="Path of a tensorrt graph optimization directory.")
parser.add_argument(
"--collect_shape_info",
type=int,
default=0,
help="Whether to collect dynamic shape before using tensorrt.")
parser.add_argument(
"--dynamic_shape_file",
type=str,
default="",
help="Path of a dynamic shape file for tensorrt.")

return parser.parse_args()


def init_predictor(model_file,
params_file,
gpu_id=0,
use_trt=False,
trt_precision=0,
trt_use_static=False,
trt_static_dir=None,
collect_shape_info=False,
dynamic_shape_file=None):
config = Config(model_file, params_file)
config.enable_memory_optim()
config.enable_use_gpu(1000, gpu_id)
if use_trt:
precision_mode = paddle.inference.PrecisionType.Float32
if trt_precision == 1:
precision_mode = paddle.inference.PrecisionType.Half
config.enable_tensorrt_engine(
workspace_size=1 << 30,
max_batch_size=1,
min_subgraph_size=10,
precision_mode=precision_mode,
use_static=trt_use_static,
use_calib_mode=False)
if collect_shape_info:
config.collect_shape_range_info(dynamic_shape_file)
else:
config.enable_tuned_tensorrt_dynamic_shape(dynamic_shape_file, True)
if trt_use_static:
config.set_optim_cache_dir(trt_static_dir)

predictor = create_predictor(config)
return predictor


def run(predictor, voxels, coords, num_points_per_voxel):
input_names = predictor.get_input_names()
for i, name in enumerate(input_names):
input_tensor = predictor.get_input_handle(name)
if name == "voxels":
input_tensor.reshape(voxels.shape)
input_tensor.copy_from_cpu(voxels.copy())
elif name == "coords":
input_tensor.reshape(coords.shape)
input_tensor.copy_from_cpu(coords.copy())
elif name == "num_points_per_voxel":
input_tensor.reshape(num_points_per_voxel.shape)
input_tensor.copy_from_cpu(num_points_per_voxel.copy())

# do the inference
predictor.run()

# get out data from output tensor
output_names = predictor.get_output_names()
for i, name in enumerate(output_names):
output_tensor = predictor.get_output_handle(name)
if i == 0:
box3d_lidar = output_tensor.copy_to_cpu()
elif i == 1:
label_preds = output_tensor.copy_to_cpu()
elif i == 2:
scores = output_tensor.copy_to_cpu()
return box3d_lidar, label_preds, scores


if __name__ == '__main__':
args = parse_args()

predictor = init_predictor(args.model_file, args.params_file, args.gpu_id,
args.use_trt, args.trt_precision,
args.trt_use_static, args.trt_static_dir,
args.collect_shape_info, args.dynamic_shape_file)
voxels, coords, num_points_per_voxel = preprocess(
args.lidar_file, args.num_point_dim, args.point_cloud_range,
args.voxel_size, args.max_points_in_voxel, args.max_voxel_num)
box3d_lidar, label_preds, scores = run(predictor, voxels, coords,
num_points_per_voxel)

scan = np.fromfile(args.lidar_file, dtype=np.float32)
pc_velo = scan.reshape((-1, 4))

# Obtain calibration information about Kitti
calib = Calibration(args.calib_file)

# Plot box in lidar cloud
show_bev_with_boxes(pc_velo, box3d_lidar, scores, calib)
Binary file added demo/img/bev.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added demo/img/mono.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added demo/img/pc.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
101 changes: 101 additions & 0 deletions demo/mono_demo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
import argparse
import os
import cv2
import numpy as np

from utils import make_imgpts_list, draw_mono_3d, total_imgpred_by_conf_to_kitti_records

from paddle3d.apis.infer import Infer
from paddle3d.apis.config import Config
from paddle3d.slim import get_qat_config
from paddle3d.utils.checkpoint import load_pretrained_model
from paddle3d.datasets.kitti.kitti_utils import camera_record_to_object


def parse_args():
"""
"""
parser = argparse.ArgumentParser(description='Model evaluation')
# params of training
parser.add_argument(
"--config", dest="cfg", help="The config file.", default=None, type=str)
parser.add_argument(
'--batch_size',
dest='batch_size',
help='Mini batch size of one gpu or cpu',
type=int,
default=None)
parser.add_argument(
'--model',
dest='model',
help='pretrained parameters of the model',
type=str,
default=None)
parser.add_argument(
'--num_workers',
dest='num_workers',
help='Num workers for data loader',
type=int,
default=2)
parser.add_argument(
'--quant_config',
dest='quant_config',
help='Config for quant model.',
default=None,
type=str)

return parser.parse_args()


def worker_init_fn(worker_id):
np.random.seed(1024)


def main(args):
"""
"""
if args.cfg is None:
raise RuntimeError("No configuration file specified!")

if not os.path.exists(args.cfg):
raise RuntimeError("Config file `{}` does not exist!".format(args.cfg))

cfg = Config(path=args.cfg, batch_size=args.batch_size)
print(args.cfg)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

print --> logger

if cfg.val_dataset is None:
raise RuntimeError(
'The validation dataset is not specified in the configuration file!'
)
elif len(cfg.val_dataset) == 0:
raise ValueError(
'The length of validation dataset is 0. Please check if your dataset is valid!'
)

dic = cfg.to_dict()
batch_size = dic.pop('batch_size')
dic.update({
'dataloader_fn': {
'batch_size': batch_size,
'num_workers': args.num_workers,
'worker_init_fn': worker_init_fn
}
})

if args.quant_config:
quant_config = get_qat_config(args.quant_config)
cfg.model.build_slim_model(quant_config['quant_config'])

if args.model is not None:
load_pretrained_model(cfg.model, args.model)
dic['checkpoint'] = None
dic['resume'] = False
else:
dic['resume'] = True

infer = Infer(**dic)
infer.infer('image')


if __name__ == '__main__':
args = parse_args()
main(args)
Loading