Skip to content

Commit

Permalink
update docs (#9214)
Browse files Browse the repository at this point in the history
* Update overview.md

* Update quick_start.md

* Update README_cn.md
  • Loading branch information
AmberC0209 authored Nov 21, 2024
1 parent 8377e84 commit 6a73218
Show file tree
Hide file tree
Showing 3 changed files with 19 additions and 19 deletions.
2 changes: 1 addition & 1 deletion README_cn.md
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,7 @@ PaddleDetection是一个基于PaddlePaddle的目标检测端到端开发套件
* 🎨 [**模型丰富一键调用**](docs/paddlex/quick_start.md):将通用目标检测、小目标检测和实例分割涉及的**55个模型**整合为3条模型产线,通过极简的**Python API一键调用**,快速体验模型效果。此外,同一套API,也支持图像分类、图像分割、文本图像智能分析、通用OCR、时序预测等共计**200+模型**,形成20+单功能模块,方便开发者进行**模型组合使用**
* 🚀 [**提高效率降低门槛**](docs/paddlex/overview.md):提供基于**统一命令****图形界面**两种方式,实现模型简洁高效的使用、组合与定制。支持**高性能部署、服务化部署和端侧部署**等多种部署方式。此外,对于各种主流硬件如**英伟达GPU、昆仑芯、昇腾、寒武纪和海光**等,进行模型开发时,都可以**无缝切换**

* 添加实例分割SOTA模型[**Mask-RT-DETR**](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/cv_modules/instance_segmentation.md)
* 添加实例分割SOTA模型[**Mask-RT-DETR**](https://paddlepaddle.github.io/PaddleX/latest/module_usage/tutorials/cv_modules/instance_segmentation.html)

**🔥超越YOLOv8,飞桨推出精度最高的实时检测器RT-DETR!**

Expand Down
18 changes: 9 additions & 9 deletions docs/paddlex/overview.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@

## 1. 低代码全流程开发简介

飞桨低代码开发工具[PaddleX](https://github.com/PaddlePaddle/PaddleX/tree/release/3.0-beta1),依托于PaddleDetection的先进技术,支持了目标检测领域的**低代码全流程**开发能力。通过低代码全流程开发,可实现简单且高效的模型使用、组合与定制。这将显著**减少模型开发的时间消耗****降低其开发难度**,大大加快模型在行业中的应用和推广速度。特色如下:
飞桨低代码开发工具[PaddleX](https://github.com/PaddlePaddle/PaddleX),依托于PaddleDetection的先进技术,支持了目标检测领域的**低代码全流程**开发能力。通过低代码全流程开发,可实现简单且高效的模型使用、组合与定制。这将显著**减少模型开发的时间消耗****降低其开发难度**,大大加快模型在行业中的应用和推广速度。特色如下:

* 🎨 **模型丰富一键调用**:将通用目标检测、小目标检测和实例分割涉及的**55个模型**整合为3条模型产线,通过极简的**Python API一键调用**,快速体验模型效果。此外,同一套API,也支持图像分类、图像分割、文本图像智能分析、通用OCR、时序预测等共计**200+模型**,形成20+单功能模块,方便开发者进行**模型组合使用**

Expand All @@ -21,7 +21,7 @@

## 2. 目标检测相关能力支持

PaddleX中目标检测领域相关的3条产线均支持本地**快速推理**,部分产线支持**在线体验**,您可以快速体验各个产线的预训练模型效果,如果您对产线的预训练模型效果满意,可以直接对产线进行[高性能部署](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_deploy/high_performance_deploy.md)/[服务化部署](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_deploy/service_deploy.md)/[端侧部署](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_deploy/lite_deploy.md),如果不满意,您也可以使用产线的**二次开发**能力,提升效果。完整的产线开发流程请参考[PaddleX产线使用概览](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/pipeline_develop_guide.md)或各产线使用教程。
PaddleX中目标检测领域相关的3条产线均支持本地**快速推理**,部分产线支持**在线体验**,您可以快速体验各个产线的预训练模型效果,如果您对产线的预训练模型效果满意,可以直接对产线进行[高性能推理](https://paddlepaddle.github.io/PaddleX/latest/pipeline_deploy/high_performance_inference.html)/[服务化部署](https://paddlepaddle.github.io/PaddleX/latest/pipeline_deploy/service_deploy.html)/[端侧部署](https://paddlepaddle.github.io/PaddleX/latest/pipeline_deploy/edge_deploy.html),如果不满意,您也可以使用产线的**二次开发**能力,提升效果。完整的产线开发流程请参考[PaddleX产线使用概览](https://paddlepaddle.github.io/PaddleX/latest/pipeline_usage/pipeline_develop_guide.html)或各产线使用教程。

此外,PaddleX为开发者提供了基于[云端图形化开发界面](https://aistudio.baidu.com/pipeline/mine)的全流程开发工具, 详细请参考[教程《零门槛开发产业级AI模型》](https://aistudio.baidu.com/practical/introduce/546656605663301)

Expand Down Expand Up @@ -69,7 +69,7 @@ PaddleX中目标检测领域相关的3条产线均支持本地**快速推理**
</tr>
</table>

> ❗注:以上功能均基于GPU/CPU实现。PaddleX还可在昆仑、昇腾、寒武纪和海光等主流硬件上进行快速推理和二次开发。下表详细列出了模型产线的支持情况,具体支持的模型列表请参阅 [模型列表(NPU)](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/support_list/model_list_npu.md) // [模型列表(XPU)](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/support_list/model_list_xpu.md) // [模型列表(MLU)](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/support_list/model_list_mlu.md) // [模型列表DCU](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/support_list/model_list_dcu.md)。同时我们也在适配更多的模型,并在主流硬件上推动高性能和服务化部署的实施。
> ❗注:以上功能均基于GPU/CPU实现。PaddleX还可在昆仑、昇腾、寒武纪和海光等主流硬件上进行快速推理和二次开发。下表详细列出了模型产线的支持情况,具体支持的模型列表请参阅 [模型列表(NPU)](https://paddlepaddle.github.io/PaddleX/latest/support_list/model_list_npu.html) // [模型列表(XPU)](https://paddlepaddle.github.io/PaddleX/latest/support_list/model_list_xpu.html) // [模型列表(MLU)](https://paddlepaddle.github.io/PaddleX/latest/support_list/model_list_mlu.html) // [模型列表DCU](https://paddlepaddle.github.io/PaddleX/latest/support_list/model_list_dcu.html)。同时我们也在适配更多的模型,并在主流硬件上推动高性能和服务化部署的实施。

**🚀 国产化硬件能力支持**
Expand Down Expand Up @@ -102,16 +102,16 @@ PaddleX中目标检测领域相关的3条产线均支持本地**快速推理**

## 3. 目标检测相关模型产线列表和教程

- **通用目标检测产线**: [使用教程](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/cv_pipelines/object_detection.md)
- **通用实例分割产线**: [使用教程](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/cv_pipelines/instance_segmentation.md)
- **小目标检测产线**: [使用教程](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/cv_pipelines/small_object_detection.md)
- **通用目标检测产线**: [使用教程](https://paddlepaddle.github.io/PaddleX/latest/pipeline_usage/tutorials/cv_pipelines/object_detection.html)
- **通用实例分割产线**: [使用教程](https://paddlepaddle.github.io/PaddleX/latest/pipeline_usage/tutorials/cv_pipelines/instance_segmentation.html)
- **小目标检测产线**: [使用教程](https://paddlepaddle.github.io/PaddleX/latest/pipeline_usage/tutorials/cv_pipelines/small_object_detection.html)


<a name="4"></a>

## 4. 目标检测相关单功能模块列表和教程

- **目标检测模块**: [使用教程](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/cv_modules/object_detection.md)
- **实例分割模块**: [使用教程](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/cv_modules/instance_segmentation.md)
- **小目标检测模块**: [使用教程](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/cv_modules/small_object_detection.md)
- **目标检测模块**: [使用教程](https://paddlepaddle.github.io/PaddleX/latest/pipeline_usage/tutorials/cv_pipelines/object_detection.html)
- **实例分割模块**: [使用教程](https://paddlepaddle.github.io/PaddleX/latest/pipeline_usage/tutorials/cv_pipelines/instance_segmentation.html)
- **小目标检测模块**: [使用教程](https://paddlepaddle.github.io/PaddleX/latest/pipeline_usage/tutorials/cv_pipelines/small_object_detection.html)

18 changes: 9 additions & 9 deletions docs/paddlex/quick_start.md
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
# 快速开始

>**说明:**
>* 飞桨低代码开发工具[PaddleX](https://github.com/PaddlePaddle/PaddleX/tree/release/3.0-beta1),依托于PaddleDetection的先进技术,支持了目标检测领域的**低代码全流程**开发能力。通过低代码全流程开发,可实现简单且高效的模型使用、组合与定制。
>* 飞桨低代码开发工具[PaddleX](https://github.com/PaddlePaddle/PaddleX),依托于PaddleDetection的先进技术,支持了目标检测领域的**低代码全流程**开发能力。通过低代码全流程开发,可实现简单且高效的模型使用、组合与定制。
>* PaddleX 致力于实现产线级别的模型训练、推理与部署。模型产线是指一系列预定义好的、针对特定AI任务的开发流程,其中包含能够独立完成某类任务的单模型(单功能模块)组合。本文档提供**目标检测相关产线**的快速使用,单功能模块的快速使用以及更多功能请参考[PaddleDetection低代码全流程开发](./overview.md)中相关章节。
### 🛠️ 安装
Expand All @@ -10,23 +10,23 @@
* **安装PaddlePaddle**
```bash
# cpu
python -m pip install paddlepaddle==3.0.0b1 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/
python -m pip install paddlepaddle==3.0.0b2 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/

# gpu,该命令仅适用于 CUDA 版本为 11.8 的机器环境
python -m pip install paddlepaddle-gpu==3.0.0b1 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
python -m pip install paddlepaddle-gpu==3.0.0b2 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/

# gpu,该命令仅适用于 CUDA 版本为 12.3 的机器环境
python -m pip install paddlepaddle-gpu==3.0.0b1 -i https://www.paddlepaddle.org.cn/packages/stable/cu123/
python -m pip install paddlepaddle-gpu==3.0.0b2 -i https://www.paddlepaddle.org.cn/packages/stable/cu123/
```
> ❗ 更多飞桨 Wheel 版本请参考[飞桨官网](https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/pip/linux-pip.html)
* **安装PaddleX**

```bash
pip install https://paddle-model-ecology.bj.bcebos.com/paddlex/whl/paddlex-3.0.0b1-py3-none-any.whl
pip install https://paddle-model-ecology.bj.bcebos.com/paddlex/whl/paddlex-3.0.0b2-py3-none-any.whl
```

> ❗ 更多安装方式参考[PaddleX安装教程](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/installation/installation.md)
> ❗ 更多安装方式参考[PaddleX安装教程](https://paddlepaddle.github.io/PaddleX/latest/installation/installation.html)
### 💻 命令行使用

一行命令即可快速体验产线效果,统一的命令行格式为:
Expand Down Expand Up @@ -99,7 +99,7 @@ for res in output:

| 产线名称 | 对应参数 | 详细说明 |
|----------|----------------------|------|
| 通用目标检测 | `object_detection` | [通用目标检测产线Python脚本使用说明](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/cv_pipelines/object_detection.md) |
| 通用实例分割 | `instance_segmentation` | [通用实例分割产线Python脚本使用说明](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/cv_pipelines/instance_segmentation.md) |
| 小目标检测 | `small_object_detection` | [小目标检测产线Python脚本使用说明](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/cv_pipelines/small_object_detection.md) |
| 通用目标检测 | `object_detection` | [通用目标检测产线Python脚本使用说明](https://paddlepaddle.github.io/PaddleX/latest/pipeline_usage/tutorials/cv_pipelines/object_detection.html) |
| 通用实例分割 | `instance_segmentation` | [通用实例分割产线Python脚本使用说明](https://paddlepaddle.github.io/PaddleX/latest/pipeline_usage/tutorials/cv_pipelines/instance_segmentation.html) |
| 小目标检测 | `small_object_detection` | [小目标检测产线Python脚本使用说明](https://paddlepaddle.github.io/PaddleX/latest/pipeline_usage/tutorials/cv_pipelines/small_object_detection.html) |

0 comments on commit 6a73218

Please sign in to comment.