-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'dev_1.17.0' into simple_pb_inclusion
- Loading branch information
Showing
8 changed files
with
1,528 additions
and
156 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Large diffs are not rendered by default.
Oops, something went wrong.
372 changes: 249 additions & 123 deletions
372
art/attacks/inference/membership_inference/black_box.py
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Large diffs are not rendered by default.
Oops, something went wrong.
192 changes: 192 additions & 0 deletions
192
tests/attacks/evasion/test_composite_adversarial_attack.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,192 @@ | ||
# MIT License | ||
# | ||
# Copyright (C) The Adversarial Robustness Toolbox (ART) Authors 2023 | ||
# | ||
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated | ||
# documentation files (the "Software"), to deal in the Software without restriction, including without limitation the | ||
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit | ||
# persons to whom the Software is furnished to do so, subject to the following conditions: | ||
# | ||
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the | ||
# Software. | ||
# | ||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE | ||
# WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, | ||
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
# SOFTWARE. | ||
import logging | ||
|
||
import numpy as np | ||
import pytest | ||
|
||
from art.attacks.evasion import CompositeAdversarialAttackPyTorch | ||
from art.estimators.estimator import BaseEstimator, LossGradientsMixin | ||
from art.estimators.classification.classifier import ClassifierMixin | ||
|
||
from tests.attacks.utils import backend_test_classifier_type_check_fail | ||
from tests.utils import ARTTestException, get_cifar10_image_classifier_pt | ||
|
||
logger = logging.getLogger(__name__) | ||
|
||
|
||
@pytest.fixture() | ||
def fix_get_cifar10_subset(get_cifar10_dataset): | ||
(x_train_cifar10, y_train_cifar10), (x_test_cifar10, y_test_cifar10) = get_cifar10_dataset | ||
n_train = 100 | ||
n_test = 11 | ||
yield x_train_cifar10[:n_train], y_train_cifar10[:n_train], x_test_cifar10[:n_test], y_test_cifar10[:n_test] | ||
|
||
|
||
@pytest.mark.skip_framework( | ||
"tensorflow1", "tensorflow2", "tensorflow2v1", "keras", "non_dl_frameworks", "mxnet", "kerastf", "huggingface" | ||
) | ||
def test_generate(art_warning, fix_get_cifar10_subset): | ||
try: | ||
(x_train, y_train, x_test, y_test) = fix_get_cifar10_subset | ||
|
||
classifier = get_cifar10_image_classifier_pt(from_logits=False, load_init=True) | ||
attack = CompositeAdversarialAttackPyTorch(classifier) | ||
|
||
x_train_adv = attack.generate(x=x_train, y=y_train) | ||
x_test_adv = attack.generate(x=x_test, y=y_test) | ||
|
||
assert x_train.shape == x_train_adv.shape | ||
assert np.min(x_train_adv) >= 0.0 | ||
assert np.max(x_train_adv) <= 1.0 | ||
assert x_test.shape == x_test_adv.shape | ||
assert np.min(x_test_adv) >= 0.0 | ||
assert np.max(x_test_adv) <= 1.0 | ||
|
||
except ARTTestException as e: | ||
art_warning(e) | ||
|
||
|
||
@pytest.mark.skip_framework( | ||
"tensorflow1", "tensorflow2", "tensorflow2v1", "keras", "non_dl_frameworks", "mxnet", "kerastf" | ||
) | ||
def test_check_params(art_warning): | ||
try: | ||
classifier = get_cifar10_image_classifier_pt(from_logits=False, load_init=True) | ||
|
||
with pytest.raises(ValueError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, enabled_attack=(0, 1, 2, 3, 4, 5, 6, 7)) | ||
|
||
with pytest.raises(ValueError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, hue_epsilon=(-10.0, 0.0)) | ||
with pytest.raises(ValueError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, hue_epsilon=(0.0, 10.0)) | ||
with pytest.raises(TypeError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, hue_epsilon=(-1, 2.0)) | ||
with pytest.raises(TypeError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, hue_epsilon=3.14) | ||
with pytest.raises(TypeError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, hue_epsilon=(0.0, 10.0, 20.0)) | ||
with pytest.raises(TypeError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, hue_epsilon=("1.0", 2.0)) | ||
|
||
with pytest.raises(ValueError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, sat_epsilon=(-10.0, 0.0)) | ||
with pytest.raises(ValueError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, sat_epsilon=(0.0, -10.0)) | ||
with pytest.raises(TypeError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, sat_epsilon=(1, 2.0)) | ||
with pytest.raises(TypeError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, sat_epsilon=2.0) | ||
with pytest.raises(TypeError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, sat_epsilon=(0.0, 10.0, 20.0)) | ||
with pytest.raises(TypeError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, sat_epsilon=("1.0", 2.0)) | ||
|
||
with pytest.raises(ValueError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, rot_epsilon=(-450.0, 359.0)) | ||
with pytest.raises(ValueError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, rot_epsilon=(10.0, -10.0)) | ||
with pytest.raises(TypeError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, rot_epsilon=(1.0, 2)) | ||
with pytest.raises(TypeError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, rot_epsilon=10) | ||
with pytest.raises(TypeError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, rot_epsilon=(0.0, 10.0, 20.0)) | ||
with pytest.raises(TypeError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, rot_epsilon=("10", 20.0)) | ||
|
||
with pytest.raises(ValueError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, bri_epsilon=(-10.0, 0.0)) | ||
with pytest.raises(ValueError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, bri_epsilon=(0.0, 10.0)) | ||
with pytest.raises(TypeError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, bri_epsilon=(-1, 1.0)) | ||
with pytest.raises(TypeError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, bri_epsilon=1.0) | ||
with pytest.raises(TypeError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, bri_epsilon=(0.0, 10.0, 20.0)) | ||
with pytest.raises(TypeError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, bri_epsilon=("1.0", 2.0)) | ||
|
||
with pytest.raises(ValueError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, con_epsilon=(-10.0, 10.0)) | ||
with pytest.raises(ValueError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, con_epsilon=(0.0, -10.0)) | ||
with pytest.raises(TypeError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, con_epsilon=(1, 2.0)) | ||
with pytest.raises(TypeError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, con_epsilon=2.0) | ||
with pytest.raises(TypeError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, con_epsilon=(0.0, 10.0, 20.0)) | ||
with pytest.raises(TypeError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, con_epsilon=("1.0", 2.0)) | ||
|
||
with pytest.raises(ValueError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, pgd_epsilon=(-0.5, 2.0)) | ||
with pytest.raises(ValueError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, pgd_epsilon=(8 / 255, -8 / 255)) | ||
with pytest.raises(TypeError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, pgd_epsilon=(-2, 1)) | ||
with pytest.raises(TypeError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, pgd_epsilon=8 / 255) | ||
with pytest.raises(TypeError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, pgd_epsilon=(0.0, 10.0, 20.0)) | ||
with pytest.raises(TypeError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, pgd_epsilon=("2/255", 3 / 255)) | ||
|
||
with pytest.raises(TypeError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, early_stop="true") | ||
with pytest.raises(TypeError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, early_stop=1) | ||
|
||
with pytest.raises(TypeError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, max_iter="max") | ||
with pytest.raises(ValueError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, max_iter=-5) | ||
with pytest.raises(TypeError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, max_iter=2.5) | ||
|
||
with pytest.raises(TypeError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, max_inner_iter="max") | ||
with pytest.raises(ValueError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, max_inner_iter=-5) | ||
with pytest.raises(TypeError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, max_inner_iter=2.5) | ||
|
||
with pytest.raises(ValueError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, attack_order="schedule") | ||
|
||
with pytest.raises(ValueError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, batch_size=-1) | ||
|
||
with pytest.raises(TypeError): | ||
_ = CompositeAdversarialAttackPyTorch(classifier, verbose="true") | ||
|
||
except ARTTestException as e: | ||
art_warning(e) | ||
|
||
|
||
@pytest.mark.framework_agnostic | ||
def test_classifier_type_check_fail(art_warning): | ||
try: | ||
backend_test_classifier_type_check_fail( | ||
CompositeAdversarialAttackPyTorch, [BaseEstimator, LossGradientsMixin, ClassifierMixin] | ||
) | ||
except ARTTestException as e: | ||
art_warning(e) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.