Skip to content

ZJU-Robotics-Lab/model-based-social-navigation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

31 Commits
 
 
 
 
 
 

Repository files navigation

model-based-social-navigation

arXiv video License: MIT

Code for Learning World Transition Model for Socially Aware Robot Navigation accepted in ICRA2021.

Paper is available here.

Video is available here.

Presenting video is available here on Bilibili.

Get ready

git clone https://github.com/YuxiangCui/model-based-social-navigation.git
catkin_make -j6
source devel/setup.bash

MODEL-FREE

roslaunch model_free_version start.launch (FOUR-AGENT)

for policy performance testing or model free training

  • main.py (4 agent main function)
  • policy.py (policy network)
  • environment_four.py (4 agent environment)
  • agent.py (agent's states, reward, action...)
  • utils.py (replay buffer)

MODEL-BASED

roslaunch model_based_version start.launch
  • main_mbpo.py (1/4 agent main function)

  • env_sample.py

  • environment_one_agent.py (real 1 agent environment)

  • env_sample_four.py

  • environment_four_agent.py (real 4 agent environment)

  • agent.py (agent's states, reward, action...)

  • replay_buffer_env.py (real data replay buffer)

  • replay_buffer_model.py (virtual data replay buffer)

  • policy.py (policy network)

  • transition_model.py (world transition model)

  • ensemble_model_train_mcnet_all.py

  • env_predict.py (virtual environment)

Acknowledgements

Code references MBPO. TD3.

Citation

If you use our source code, please consider citing the following:

@article{cui2020learning,
  title={Learning World Transition Model for Socially Aware Robot Navigation},
  author={Cui, Yuxiang and Zhang, Haodong and Wang, Yue and Xiong, Rong},
  journal={arXiv preprint arXiv:2011.03922},
  year={2020}
}

About

Learning World Transition Model for Socially Aware Robot Navigation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published