Skip to content

Java 23, SpringBoot 3.4.1 Examples using Deep Learning 4 Java & LangChain4J for Generative AI using ChatGPT LLM, RAG and other open source LLMs. Sentiment Analysis, Application Context based ChatBots. Custom Data Handling. LLMs - GPT 3.5 / 4o, Gemini Pro 1.5, Claude 3, Llama 3.1, Phi-3, Gemma 2, Falcon 3, Qwen 2.5, Mistral Nemo, Wizard Math

License

Notifications You must be signed in to change notification settings

arafkarsh/ms-springboot-ai

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AI/ML & Gen Ai - Langchain4J & Deep Learning 4J

Java 23, Springboot 3.4.1 Examples

Quality Gate Status Bugs Code Smells Duplicated Lines (%)

  • Java 23
  • SpringBoot 3.4.1
  • LangChain4J 0.36.0
  • Deep Learning 4J 1.0.0-M2.1

Generative AI refers to a subset of artificial intelligence that can generate new content based on input data. This encompasses models that can create text, images, music, and even videos. Examples of generative AI include language models like OpenAI's GPT-3 and DALL-E, which can generate human-like text and images from textual descriptions, respectively.

Generative AI models are typically trained on vast datasets and use deep learning techniques to learn patterns and structures in the data. They have a wide range of applications, including:

  • Natural Language Processing (NLP): Generating human-like text for chatbots, translations, and content creation.
  • Creative Arts: Creating artwork, music, and design elements.
  • Data Augmentation: Generating additional data for training other machine learning models.
  • Healthcare: Assisting in medical imaging and creating personalized treatment plans.

How LangChain4J Gen AI API Helps Developers Build Spring Boot AI Apps

LangChain4J is a Java library designed to simplify the integration of large language models (LLMs) and AI capabilities into Java applications, including those built with Spring Boot. Here’s how it helps developers:

  • Unified API for LLMs: LangChain4J provides a unified API that supports multiple LLM providers like OpenAI and Google Vertex AI. This abstraction allows developers to switch between different LLMs without changing their codebase significantly.
  • Embedding Store Integration: It integrates with various embedding stores, enabling efficient handling of vectorized data. This is particularly useful for retrieval-augmented generation (RAG) tasks, where relevant information is fetched from a knowledge base to enhance AI responses.
  • Toolbox of Features: The library includes a comprehensive set of tools for prompt templating, memory management, and output parsing. These tools help in building complex AI applications by providing high-level abstractions and ready-to-use components.
  • Spring Boot Integration: LangChain4J supports Spring Boot, making it easier for developers to create robust and scalable AI applications. The integration allows seamless incorporation of AI services into Spring Boot applications, leveraging Spring's dependency injection and configuration management features.
  • Examples and Documentation: LangChain4J offers extensive documentation and examples, guiding developers through various use cases and demonstrating how to implement AI-powered functionalities in their applications.

Case Study: Health Care App - Gen Ai Enabled Diagnosis Microservices

Ai RAG-0

Setup Database Password Encryption

This ai-service template offers a range of built-in functionalities. To simplify the demonstration of various features, an encrypted password is utilized for connecting to H2 and PostgreSQL databases. The template includes utilities for encrypting and decrypting passwords, ensuring that the encryption key is securely stored outside the application’s runtime context.

Encrypted H2 (In Memory) Database Password. Uses H2 database in Dev (Profile) mode. Package Structure Encrypted PostgreSQL Database Password. Uses PostgreSQL DB in Staging & Prod (profile) mode. Package Structure Password can be decrypted only using an Encryption Key stored in System Enviornment variable Package Structure If the Quality Gate check fails, it's because the password is encrypted within the application’s properties file, with the encryption key stored externally, outside the application’s context.

However, quality standards mandate that passwords should be securely stored in a vault, such as HashiCorp Vault, for enhanced security. To know more about how to setup these passwords (for H2 & PostgreSQL) and environment variables checkout Session 1.2

AI-Service Package Structure

Package Structure

io.fusion.air.microservice

  1. adapters (All the Implementations from App/Service perspective)
  2. ai (All AI Code Examples. ML, Gen AI Examples)
  3. domain (All Entities, Models, Interfaces for the implementations)
  4. security (All Security related modules)
  5. server (Managing the Service - from a server perspective, Setups (DB, Configs)
  6. utils (Standard Utilities)

Gen AI Examples

Gen AI Examples: Comparison of 8 LLMs (3 Cloud based & 5 Local) on Enterprise Features

Following comparison is based on the features available in LangChain4J API (which supported by OpenAI ChatGPT). These features are essential for Gen AI based Enterprise App Development.

# Example GPT 4o Meta Llama3 Mistral Microsoft Phi-3 Google Gemma TII Falcon 2 Claude 3 Gemini 1.5
1. Hello World 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢
2. Complex World 🟢 🟢 🔴 M1 🟢 🟢 🟢 🟢 🟢
3. Custom Data 🟢 🟢 🟢 🟢 🟢 🔴 F1 🟢 🟢
4. Image Generation 🟢 🔴 L1 🔴 M2 🔴 P1 🟠 🔴 F2 🟡 🟡
5. Prompt Template 🟢 🟢 🔴 M3 🟢 🟢 🟢 🟢 🟢
6. Tools 🟢 🔴 L2 🔴 M4 🔴 P2 🔴 G1 🔴 F3 🟢 🔴 G1
7. Chat Memory 🟢 🟢 🟢 🔴 P3 🔴 G2 🟢 🟢 🔴 G2
8. FewShot 🟢 🟢 🔴 M5 🟢 🟢 🟢 🟢 🔴 G3
9. Language Translator 🟢 🟢 🔴 M6 🟢 🟢 🟢 🟢 🟢
10. Sentiment Analyzer 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢
11. Data Extractor 🟠 O1 🔴 L3 🔴 M7 🔴 P4 🔴 G3 🔴 F4 🟢 🔴 G4
12. Persistent Store 🟢 🟢 🔴 M8 🔴 P5 🔴 G4 🟢 🟢 🟢

Retrieval Augmented Generation (RAG) Examples of 8 LLMs

# Example GPT 4o Meta Llama3 Mistral Microsoft Phi-3 Google Gemma TII Falcon 2 Claude 3 Gemini 1.5
51. Simple 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢
52. Segments 🟢 🟢 🟢 🟢 🟢 🟠 🟢 🟢
53. Query Transformer 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢
54. Query Router 🟢 🔴 L4 🔴 M9 🔴 P6 🔴 G4 🔴 F5 🟢 🔴 G5
55. Re-Ranking 🟢 🟢 🟢 🟢 🟢 🟠 🟢 🟢
56. MetaData 🟢 🟢 🟢 🟢 🟢 🟠 🟢 🟢
57. Multiple Content Retrievers 🟢 🟢 🟢 🟢 🟢 🟠 🟢 🟢
58. Skipping Content Retrieval 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢
59. Health Care App 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢

Top LLM Rankings based on Enterprise Features

# Rank Company LLM Score Category
1 1 Anthropic Claude 3 Haiku 21/21 Cloud
2 2 Open AI Chat GPT 4o 20/21 Cloud
3 3 Meta Llama 3 17/21 Local
4 4 TII Falcon 2 16/21 Local
5 4 Google Gemini 1.5 Pro 16/21 Cloud
6 4 Google Gemma 16/21 Local
7 5 Microsoft PHI 3 15/21 Local
8 6 Mistral Mistral 12/21 Local

Note: Cloud-based LLMs will have more than 500 billion parameter support while the local LLMs are mostly based on 8 Billion parameters.

Checkout more details on Testing Scores

Install Local LLMs

To Install the Local LLMs using Ollama

  1. Meta Llama3
  2. Google Gemma
  3. Microsoft PHI-3
  4. TII Falcon 2
  5. Mistral
  6. Wizard Math

Check out the installation guide.

Get the Keys for Testing Cloud LLMs

Register to get the API Keys

  1. Open AI - ChatGPT (API Key can be created here: https://platform.openai.com/api-keys)
  2. Anthropic - Claude 3 (API key can be created here: https://console.anthropic.com/settings/keys)
  3. Google Cloud - (https://console.cloud.google.com/ - Check AiConstants.java for Instructions)
  4. Cohere - (API key here: https://dashboard.cohere.com/welcome/register)
  5. HuggingFace - (API key here: https://huggingface.co/settings/tokens)
  6. Rapid - (API key here: https://rapidapi.com/judge0-official/api/judge0-ce)

Set these Keys in your environment

    // API Keys -----------------------------------------------------------------------
    // OpenAI API key here: https://platform.openai.com/account/api-keys
    public static final String OPENAI_API_KEY = System.getenv("OPENAI_API_KEY");
    
    // Cohere API key here: // https://dashboard.cohere.com/welcome/register
    public static final String COHERE_API_KEY = System.getenv("COHERE_API_KEY");
    
    // Anthropic API key here:: https://console.anthropic.com/settings/keys
    public static final String ANTHROPIC_API_KEY = System.getenv("ANTHROPIC_API_KEY");
    
    // HuggingFace API key here: https://huggingface.co/settings/tokens
    public static final String HF_API_KEY = System.getenv("HF_API_KEY");
    
    // Judge0 RapidAPI key here: https://rapidapi.com/judge0-official/api/judge0-ce
    public static final String RAPID_API_KEY = System.getenv("RAPID_API_KEY");

Gen AI - Code Package Structure

Package io.fusion.air.microservice.ai.genai

  1. controllers (Rest Endpoints for testing the examples)
  2. core
    1. assistants (Based on LangChain4J AiService)
    2. models (Data Models used in the code)
    3. prompts (Structured Prompts to have specific outputs)
    4. services (LLM Specific Business Logic re-used across all the examples. )
    5. tools (Functions getting invoked based on LLM search)
  3. examples (Claude 3, Falcon 2, GPT 4o, Gemini, Gemma, Llama3, Mistral, Phi-3, Wizard Math)
  4. utils (Generic Code to create ChatLanguageModels and Configurations, API Keys and Console Runner)

Code Structure

Ai-Code

Quick Test after starting the SpringBoot App

Ai Prompt

Sentiment Analysis using ChatGPT 4o

Ai Sentiment

Content Moderation using ChatGPT 4o

Ai-Content

ChatBot using RAG (Custom Data) - Case Study: Car Rental Service

RAG Architecture

Retrieval-Augmented Generation (RAG) enhances the output of large language models (LLMs) by incorporating authoritative external knowledge bases. While LLMs are trained on vast datasets and utilize billions of parameters to generate responses for tasks like question answering, language translation, and text completion, RAG optimizes these outputs by referencing specific, up-to-date information sources beyond the model's training data. This process significantly extends the capabilities of LLMs to cater to specialized domains or an organization's internal knowledge without necessitating model retraining. Consequently, RAG provides a cost-effective solution to ensure that the generated content remains relevant, accurate, and contextually appropriate.

Large Language Models (LLMs) face several challenges:

  • They may provide false information when they lack the correct answer.
  • They can deliver outdated or generic information when specific, current responses are expected by the user.
  • They might generate responses based on non-authoritative sources.
  • They can produce inaccurate responses due to terminology confusion, where different training sources use the same terms to describe different concepts.

Retrieval-Augmented Generation (RAG) addresses several challenges associated with LLMs by directing the model to fetch relevant information from authoritative, pre-determined knowledge sources. This approach allows organizations to exert more control over the content generated by the model, ensuring accuracy and relevance. Additionally, it provides users with clearer insights into the sources and processes the LLM uses to formulate its responses.

Ai RAG-1

Conversation using LLM with (Custom Data) Car Rental Service Agreement

Ai ChatBot-1 Ai ChatBot-2 Ai ChatBot-3

Data Extractions using ChatGPT 4o

Ai Sentiment

LangChain4J operates on two levels of abstraction:

  • Low level. At this level, you have the most freedom and access to all the low-level components such as ChatLanguageModel, UserMessage, AiMessage, EmbeddingStore, Embedding, etc. These are the "primitives" of your LLM-powered application. You have complete control over how to combine them, but you will need to write more glue code.
  • High level. At this level, you interact with LLMs using high-level APIs like AiServices and Chains, which hides all the complexity and boilerplate from you. You still have the flexibility to adjust and fine-tune the behavior, but it is done in a declarative manner.

LangChain4J Read more... LangChain4J Introduction

Package Structure

Package Structure

Pre-Requisites

  1. Java 23
  2. SpringBoot 3.4.1
  3. LangChain4J 0.30.0
  4. Jakarta EE 10 (jakarta.servlet., jakarta.persistence., javax.validation.*)

1. Setting up the Template

Step 1.1 - Getting Started

  1. git clone https://github.com/arafkarsh/ms-springboot-324-ai.git
  2. cd ms-springboot-324-ai

Step 1.2 - Setup Encrypted DB Password in Property files

1.2.1 Encrypt the Database passwords for H2 and PostgreSQL

If you dont encrypt the password with your Encryption Key it will throw an exception saying unable to decrypt the password. Here are the steps to encrypt the password.

Run the follwing command line option

$ source encrypt your-db-password your-encrypton-key

Passowrd-Gen

Your encryption key will be set in the following Environment variable. SpringBoot Will automatically pickup the encryption key from this environment variable.

JASYPT_ENCRYPTOR_PASSWORD=your-encrypton-key

1.2.2 Update the Database passwords for H2 and PostgreSQL in the Property files

Update the property file in the local file

spring.datasource.password=ENC(kkthRIyJ7ogLJP8PThfXjqko33snTUa9lY1GkyFpzr7KFRVhRVXLOMwNSIzr4EjFGAOWLhWTH5cAWzRzAfs33g==)

AND

  • the property template in src/main/resources/app.props.tmpl
  • dev src/main/resources/application-dev.properties
spring.datasource.password=ENC(kkthRIyJ7ogLJP8PThfXjqko33snTUa9lY1GkyFpzr7KFRVhRVXLOMwNSIzr4EjFGAOWLhWTH5cAWzRzAfs33g==)

AND the property files for

  • staging src/main/resources/application-staging.properties
  • prod src/main/resources/application-prod.properties
spring.datasource.password=ENC(/J0gRHIdlhBHFwpNo3a+1q3+8Uig5+uSNQHO/lCGOrfg/e8Wt2o3v1eC4TaquaDVGREOEFphpw1B84lOtxgeIA==)

1.2.3 - Generating the Encrypted Text from REST Endpoint

You can use the following REST Endpoint to encrypt the sensitive data. This will work only after setting the environment variable JASYPT_ENCRYPTOR_PASSWORD and creating the first DB password using the command line options.

Passowrd-Van

Step 1.3 - Compile (Once your code is ready)

1.3.1 Compile the Code

Execute the "compile" from ms-springboot-334-vanilla

  1. compile OR ./compile (Runs in Linux and Mac OS)
  2. mvn clean; mvn -e package; (All Platforms)
  3. Use the IDE Compile options

1.3.2 What the "Compile" Script will do

  1. Clean up the target folder
  2. Generate the build no. and build date (takes application.properties backup)
  3. build final output SpringBoot fat jar and maven thin jar
  4. copy the jar files (and dependencies) to src/docker folder
  5. copy the application.properties file to current folder and src/docker folder

In Step 1.3.2 application.properties file will be auto generated by the "compile" script. This is a critical step. Without generated application.properties file the service will NOT be running. There is pre-built application properties file. Following three property files are critical (to be used with Spring Profiles)

  1. application.properties
  2. application-dev.properties
  3. application-staging.properties
  4. application-prod.properties

Step 1.4 - Run the Application

1.4.1 - Spring Profiles

  1. dev (Development Mode)
  2. staging (Staging Mode)
  3. prod (Production Mode)

1.4.2 - Start the Service

  1. Linux or Mac OS - Profiles (dev, staging, or prod)
run 
run dev 
run staging 
run prod 
  1. All Platforms - Profiles (dev, staging, or prod)
 mvn spring-boot:run -Dspring-boot.run.profiles=dev
 mvn spring-boot:run -Dspring-boot.run.profiles=staging
 mvn spring-boot:run -Dspring-boot.run.profiles=prod
  1. Microsoft Windows - Profiles (dev, staging, or prod)
java -jar target/ai-service-*-spring-boot.jar --spring.profiles.active=dev  -Djava.security.manager=java.lang.SecurityManager -Djava.security.policy=./vanilla.policy
java -jar target/ai-service-*-spring-boot.jar --spring.profiles.active=staging  -Djava.security.manager=java.lang.SecurityManager -Djava.security.policy=./vanilla.policy
java -jar target/ai-service-*-spring-boot.jar --spring.profiles.active=prod  -Djava.security.manager=java.lang.SecurityManager -Djava.security.policy=./vanilla.policy

1.4.3 - Test the Service

  1. test OR ./test (Runs in Linux or Mac OS)
  2. Execute the curl commands directly (from the test script)

1.4.4 - Running through IDE

Check the application.properties (in the project root directory) to change the profile Ex. spring.profiles.default=dev

1.4.5 - $ run prod (Result)

Run Results

1.4.6 - MS Cache Swagger UI Docs for Testing

Swagger Docs

Step 1.5 - Testing the APIs Using Swagger API Docs or Postman

To test the APIs (in secure mode - you will see a lock icon in the Swagger Docs). These test tokens are generated based on the flag server.token.test=true in the application.properties file. (Change the app.props.tmpl if you want to change in the build process.) In the Production environment, this flag should be false. These tokens can be generated only in an Auth Service. All the services need not generate these tokens unless for the developers to test it out. In a real world scenario, disable (Comment out the function generateTestToken() from the code java file ServiceEventListener.java in the package documentation io.fusion.air.microservice.server.service) this feature for production environment.

Step 1.5.1: Copy the Auth Token

Authorize Request

Step 1.5.2: Click on the Authorize Button (Top Left the Swagger UI)

Authorize Request

Step 1.5.3: Enter the Token and Click Authorize

Authorize Request

Step 1.5.4: Enter the Refresh Token & Tx Token with every request that needs authorization

Authorize Request

Step 1.6 - Import Swagger API Docs Into Postman

What is Postman?

  • Postman is an API platform for building and using APIs. Postman simplifies each step of the API lifecycle and streamlines collaboration so you can create better APIs—faster.
  • Download Postman for Windows, Mac & Linux. https://www.postman.com/

Step 1.6.1: Swagger Open API 3.0 Docs JSON Format

Swagger JSON

Step 1.6.2: Import Into Postman - Set the Link

Postman Import

Step 1.6.3: Import Into Postman - Confirm

Postman Import Postman Import

Step 1.6.4: Test the API

Postman Import

Step 1.7 - JWT Token Validation example

1.7.1 Public API (Without Token Validation) - ...adapters.controllers.open.*

No-Authorizet

1.7.2 Secure API with a Single Token (Primarily to be used by ADMIN)

Authorizet-Single

1.7.3 Secure API with an Additional Tx Token which contains App Specific Claims.

Authorize-Tx

1.7.4 All the APIs under the Secure Package (under ...adapters.controllers.secured.*)

Secured-Pkg

LangChain 4 J

Chat Models

  • OpenAI (Examples available)
  • Ollama - run AI models on your local machine (Examples available)
  • Azure Open AI
  • Amazon Bedrock
    • Cohere's Command
    • AI21 Labs' Jurassic-2
    • Meta's LLama 2
    • Amazon's Titan
  • Google Vertex AI Palm
  • Google Gemini
  • HuggingFace - access thousands of models, including those from Meta such as Llama2
  • MistralAI

Text-to-image Models

  • OpenAI with DALL-E (Examples available)
  • StabilityAI

Transcription (audio to text) Models

  • OpenAI

Embedding Models

  • OpenAI
  • Ollama
  • Azure OpenAI
  • ONNX
  • PostgresML
  • Bedrock Cohere
  • Bedrock Titan
  • Google VertexAI
  • Mistal AI

The Vector Store API provides portability across different providers, featuring a novel SQL-like metadata filtering API that maintains portability.

Vector Databases

  • Azure Vector Search
  • Chroma
  • Milvus
  • Neo4j
  • PostgreSQL/PGVector
  • PineCone
  • Redis
  • Weaviate
  • Qdrant

Models supported are

  • OpenAI
  • Azure OpenAI
  • VertexAI
  • Mistral AI

Checkout the CRUD Operation Examples

  1. Setting up Postman with REST Endpoints for Testing
  2. CRUD Examples
  3. JWT Token Examples

Check the CRUD_Examples.md

(C) Copyright 2024-25 : Apache 2 License : Author: Araf Karsh Hamid

 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.

About

Java 23, SpringBoot 3.4.1 Examples using Deep Learning 4 Java & LangChain4J for Generative AI using ChatGPT LLM, RAG and other open source LLMs. Sentiment Analysis, Application Context based ChatBots. Custom Data Handling. LLMs - GPT 3.5 / 4o, Gemini Pro 1.5, Claude 3, Llama 3.1, Phi-3, Gemma 2, Falcon 3, Qwen 2.5, Mistral Nemo, Wizard Math

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published