Skip to content

Commit

Permalink
update unit tests
Browse files Browse the repository at this point in the history
  • Loading branch information
siddvenk committed Dec 21, 2024
1 parent a1fcce3 commit 541bd63
Show file tree
Hide file tree
Showing 4 changed files with 248 additions and 74 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -21,36 +21,62 @@
from djl_python.properties_manager.properties import Properties

DTYPE_MAPPER = {
"float32": "float32",
"fp32": "float32",
"float16": "float16",
"fp16": "float16",
"bfloat16": "bfloat16",
"bf16": "bfloat16",
"auto": "auto"
}


def construct_vllm_args_list(vllm_engine_args: dict,
parser: FlexibleArgumentParser):
# Modified from https://github.com/vllm-project/vllm/blob/v0.6.4/vllm/utils.py#L1258
args_list = []
store_boolean_arguments = {
action.dest
for action in parser._actions if isinstance(action, StoreBoolean)
}
for engine_arg, engine_arg_value in vllm_engine_args.items():
if str(engine_arg_value).lower() in {
'true', 'false'
} and engine_arg not in store_boolean_arguments:
if str(engine_arg_value).lower() == 'true':
args_list.append(f"--{engine_arg}")
else:
args_list.append(f"--{engine_arg}={engine_arg_value}")
return args_list


class VllmRbProperties(Properties):
engine: Optional[str] = None
# The following configs have different names in DJL compared to vLLM, we only accept DJL name currently
tensor_parallel_degree: int = 1
pipeline_parallel_degree: int = 1
# The following configs have different names in DJL compared to vLLM, either is accepted
quantize: Optional[str] = Field(alias="quantization", default=None)
quantize: Optional[str] = Field(alias="quantization",
default=EngineArgs.quantization)
max_rolling_batch_prefill_tokens: Optional[int] = Field(
alias="max_num_batched_tokens", default=None)
cpu_offload_gb_per_gpu: Optional[float] = Field(alias="cpu_offload_gb",
default=None)
alias="max_num_batched_tokens",
default=EngineArgs.max_num_batched_tokens)
cpu_offload_gb_per_gpu: float = Field(alias="cpu_offload_gb",
default=EngineArgs.cpu_offload_gb)
# The following configs have different defaults, or additional processing in DJL compared to vLLM
dtype: str = "auto"
max_loras: int = 4
# The following configs have broken processing in vllm via the FlexibleArgumentParser
long_lora_scaling_factors: Optional[Tuple[float, ...]] = None
use_v2_block_manager: bool = True

# Neuron vLLM properties
device: Optional[str] = None
device: str = 'auto'
preloaded_model: Optional[Any] = None
generation_config: Optional[Any] = None

# This allows generic vllm engine args to be passed in and set with vllm
model_config = ConfigDict(extra='allow')
model_config = ConfigDict(extra='allow', populate_by_name=True)

@field_validator('engine')
def validate_engine(cls, engine):
Expand All @@ -59,6 +85,14 @@ def validate_engine(cls, engine):
f"Need python engine to start vLLM RollingBatcher")
return engine

@field_validator('dtype')
def validate_dtype(cls, val):
if val not in DTYPE_MAPPER:
raise ValueError(
f"Invalid dtype={val} provided. Must be one of {DTYPE_MAPPER.keys()}"
)
return DTYPE_MAPPER[val]

@model_validator(mode='after')
def validate_pipeline_parallel(self):
if self.pipeline_parallel_degree != 1:
Expand All @@ -67,9 +101,9 @@ def validate_pipeline_parallel(self):
)
return self

@field_validator('long_lora_scaling_factors', mode='before')
# TODO: processing of this field is broken in vllm via from_cli_args
# we should upstream a fix for this to vllm
@field_validator('long_lora_scaling_factors', mode='before')
def validate_long_lora_scaling_factors(cls, val):
if isinstance(val, str):
val = ast.literal_eval(val)
Expand All @@ -96,7 +130,7 @@ def validate_potential_lmi_vllm_config_conflict(
if vllm_config_val != lmi_config_val:
raise ValueError(
f"Both the DJL {lmi_config_val}={lmi_config_val} and vLLM {vllm_config_name}={vllm_config_val} configs have been set with conflicting values."
f"We currently only accept the DJL config {lmi_config_val}, please remove the vllm {vllm_config_name} configuration."
f"We currently only accept the DJL config {lmi_config_name}, please remove the vllm {vllm_config_name} configuration."
)

validate_potential_lmi_vllm_config_conflict("tensor_parallel_degree",
Expand All @@ -117,20 +151,18 @@ def generate_vllm_engine_arg_dict(self,
'revision': self.revision,
'max_loras': self.max_loras,
'enable_lora': self.enable_lora,
'trust_remote_code': self.trust_remote_code,
'cpu_offload_gb': self.cpu_offload_gb_per_gpu,
'use_v2_block_manager': self.use_v2_block_manager,
'quantization': self.quantize,
'device': self.device,
}
if self.quantize is not None:
vllm_engine_args['quantization'] = self.quantize
if self.max_rolling_batch_prefill_tokens is not None:
vllm_engine_args[
'max_num_batched_tokens'] = self.max_rolling_batch_prefill_tokens
if self.cpu_offload_gb_per_gpu is not None:
vllm_engine_args['cpu_offload_gb'] = self.cpu_offload_gb_per_gpu
if self.device is not None:
vllm_engine_args['device'] = self.device
if self.preloaded_model is not None:
vllm_engine_args['preloaded_model'] = self.preloaded_model
if self.generation_config is not None:
vllm_engine_args['generation_config'] = self.generation_config
if self.device == 'neuron':
vllm_engine_args['block_size'] = passthrough_vllm_engine_args.get(
"max_model_len")
vllm_engine_args.update(passthrough_vllm_engine_args)
return vllm_engine_args

Expand All @@ -143,11 +175,15 @@ def get_engine_args(self) -> EngineArgs:
f"Construction vLLM engine args from the following DJL configs: {vllm_engine_arg_dict}"
)
parser = EngineArgs.add_cli_args(FlexibleArgumentParser())
args_list = self.construct_vllm_args_list(vllm_engine_arg_dict, parser)
args_list = construct_vllm_args_list(vllm_engine_arg_dict, parser)
args = parser.parse_args(args=args_list)
engine_args = EngineArgs.from_cli_args(args)
# we have to do this separately because vllm converts it into a string
engine_args.long_lora_scaling_factors = self.long_lora_scaling_factors
# These neuron configs are not implemented in the vllm arg parser
if self.device == 'neuron':
setattr(engine_args, 'preloaded_model', self.preloaded_model)
setattr(engine_args, 'generation_config', self.generation_config)
return engine_args

def get_additional_vllm_engine_args(self) -> Dict[str, Any]:
Expand All @@ -156,21 +192,3 @@ def get_additional_vllm_engine_args(self) -> Dict[str, Any]:
for k, v in self.__pydantic_extra__.items()
if k in EngineArgs.__annotations__
}

def construct_vllm_args_list(self, vllm_engine_args: dict,
parser: FlexibleArgumentParser):
# Modified from https://github.com/vllm-project/vllm/blob/v0.6.4/vllm/utils.py#L1258
args_list = []
store_boolean_arguments = {
action.dest
for action in parser._actions if isinstance(action, StoreBoolean)
}
for engine_arg, engine_arg_value in vllm_engine_args.items():
if str(engine_arg_value).lower() in {
'true', 'false'
} and engine_arg not in store_boolean_arguments:
if str(engine_arg_value).lower() == 'true':
args_list.append(f"--{engine_arg}")
else:
args_list.append(f"--{engine_arg}={engine_arg_value}")
return args_list
155 changes: 144 additions & 11 deletions engines/python/setup/djl_python/tests/test_properties_manager.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
TnXMemoryLayout, TnXDtypeName, TnXModelLoaders)
from djl_python.properties_manager.trt_properties import TensorRtLlmProperties
from djl_python.properties_manager.hf_properties import HuggingFaceProperties
from djl_python.properties_manager.vllm_rb_properties import VllmRbProperties, DTYPE_MAPPER
from djl_python.properties_manager.vllm_rb_properties import VllmRbProperties
from djl_python.properties_manager.sd_inf2_properties import StableDiffusionNeuronXProperties
from djl_python.properties_manager.lmi_dist_rb_properties import LmiDistRbProperties
from djl_python.properties_manager.scheduler_rb_properties import SchedulerRbProperties
Expand Down Expand Up @@ -423,7 +423,7 @@ def test_hf_error_case(self, params):
HuggingFaceProperties(**params)

def test_vllm_properties(self):
# test with valid vllm properties

def validate_vllm_config_and_engine_args_match(
vllm_config_value,
engine_arg_value,
Expand All @@ -435,7 +435,7 @@ def validate_vllm_config_and_engine_args_match(
def test_vllm_default_properties():
required_properties = {
"engine": "Python",
"model_id_or_path": "some_model",
"model_id": "some_model",
}
vllm_configs = VllmRbProperties(**required_properties)
engine_args = vllm_configs.get_engine_args()
Expand All @@ -451,22 +451,120 @@ def test_vllm_default_properties():
vllm_configs.quantize, engine_args.quantization, None)
validate_vllm_config_and_engine_args_match(
vllm_configs.max_rolling_batch_size, engine_args.max_num_seqs,
HuggingFaceProperties.max_rolling_batch_size)
32)
validate_vllm_config_and_engine_args_match(vllm_configs.dtype,
engine_args.dtype,
'auto')
validate_vllm_config_and_engine_args_match(vllm_configs.max_loras,
engine_args.max_loras,
4)
self.assertEqual(vllm_configs.cpu_offload_gb_per_gpu, None)
validate_vllm_config_and_engine_args_match(
vllm_configs.cpu_offload_gb_per_gpu,
engine_args.cpu_offload_gb, EngineArgs.cpu_offload_gb)
self.assertEqual(
len(vllm_configs.get_additional_vllm_engine_args()), 0)

def test_invalid_pipeline_parallel():
properties = {
"engine": "Python",
"model_id": "some_model",
"tensor_parallel_degree": "4",
"pipeline_parallel_degree": "2",
}
with self.assertRaises(ValueError):
_ = VllmRbProperties(**properties)

def test_invalid_engine():
properties = {
"engine": "bad_engine",
"model_id": "some_model",
}
with self.assertRaises(ValueError):
_ = VllmRbProperties(**properties)

def test_aliases():
properties = {
"engine": "Python",
"model_id": "some_model",
"quantization": "awq",
"max_num_batched_tokens": "546",
"cpu_offload_gb": "7"
}
vllm_configs = VllmRbProperties(**properties)
engine_args = vllm_configs.get_engine_args()
validate_vllm_config_and_engine_args_match(
vllm_configs.quantize, engine_args.quantization, "awq")
validate_vllm_config_and_engine_args_match(
vllm_configs.max_rolling_batch_prefill_tokens,
engine_args.max_num_batched_tokens, 546)
validate_vllm_config_and_engine_args_match(
vllm_configs.cpu_offload_gb_per_gpu,
engine_args.cpu_offload_gb, 7)

def test_vllm_passthrough_properties():
properties = {
"engine": "Python",
"model_id": "some_model",
"tensor_parallel_degree": "4",
"pipeline_parallel_degree": "1",
"max_rolling_batch_size": "111",
"quantize": "awq",
"max_rolling_batch_prefill_tokens": "400",
"cpu_offload_gb_per_gpu": "8",
"dtype": "bf16",
"max_loras": "7",
"long_lora_scaling_factors": "1.1, 2.0",
"trust_remote_code": "true",
"max_model_len": "1024",
"enforce_eager": "true",
"enable_chunked_prefill": "False",
"gpu_memory_utilization": "0.4",
}
vllm_configs = VllmRbProperties(**properties)
engine_args = vllm_configs.get_engine_args()
self.assertTrue(
len(vllm_configs.get_additional_vllm_engine_args()) > 0)
validate_vllm_config_and_engine_args_match(
vllm_configs.model_id_or_path, engine_args.model, "some_model")
validate_vllm_config_and_engine_args_match(
vllm_configs.tensor_parallel_degree,
engine_args.tensor_parallel_size, 4)
validate_vllm_config_and_engine_args_match(
vllm_configs.pipeline_parallel_degree,
engine_args.pipeline_parallel_size, 1)
validate_vllm_config_and_engine_args_match(
vllm_configs.max_rolling_batch_size, engine_args.max_num_seqs,
111)
validate_vllm_config_and_engine_args_match(
vllm_configs.quantize, engine_args.quantization, "awq")
validate_vllm_config_and_engine_args_match(
vllm_configs.max_rolling_batch_prefill_tokens,
engine_args.max_num_batched_tokens, 400)
validate_vllm_config_and_engine_args_match(
vllm_configs.cpu_offload_gb_per_gpu,
engine_args.cpu_offload_gb, 8.0)
validate_vllm_config_and_engine_args_match(vllm_configs.dtype,
engine_args.dtype,
"bfloat16")
validate_vllm_config_and_engine_args_match(vllm_configs.max_loras,
engine_args.max_loras,
7)
validate_vllm_config_and_engine_args_match(
vllm_configs.long_lora_scaling_factors,
engine_args.long_lora_scaling_factors, (1.1, 2.0))
validate_vllm_config_and_engine_args_match(
vllm_configs.trust_remote_code, engine_args.trust_remote_code,
True)
self.assertEqual(engine_args.max_model_len, 1024)
self.assertEqual(engine_args.enforce_eager, True)
self.assertEqual(engine_args.enable_chunked_prefill, False)
self.assertEqual(engine_args.gpu_memory_utilization, 0.4)

def test_long_lora_scaling_factors():
properties = {
"engine": "Python",
"model_id_or_path": "some_model",
'long_lora_scaling_factors': "3.0"
"model_id": "some_model",
"long_lora_scaling_factors": "3.0"
}
vllm_props = VllmRbProperties(**properties)
engine_args = vllm_props.get_engine_args()
Expand Down Expand Up @@ -500,16 +598,51 @@ def test_long_lora_scaling_factors():
def test_invalid_long_lora_scaling_factors():
properties = {
"engine": "Python",
"model_id_or_path": "some_model",
'long_lora_scaling_factors': "a,b"
"model_id": "some_model",
"long_lora_scaling_factors": "a,b"
}
vllm_props = VllmRbProperties(**properties)
with self.assertRaises(ValueError):
vllm_props.get_engine_args()
_ = VllmRbProperties(**properties)

def test_conflicting_djl_vllm_conflicts():
properties = {
"engine": "Python",
"model_id": "some_model",
"tensor_parallel_degree": 2,
"tensor_parallel_size": 1,
}
vllm_configs = VllmRbProperties(**properties)
with self.assertRaises(ValueError):
vllm_configs.get_engine_args()

properties = {
"engine": "Python",
"model_id": "some_model",
"pipeline_parallel_degree": 1,
"pipeline_parallel_size": 0,
}
vllm_configs = VllmRbProperties(**properties)
with self.assertRaises(ValueError):
vllm_configs.get_engine_args()

properties = {
"engine": "Python",
"model_id": "some_model",
"max_rolling_batch_size": 1,
"max_num_seqs": 2,
}
vllm_configs = VllmRbProperties(**properties)
with self.assertRaises(ValueError):
vllm_configs.get_engine_args()

test_vllm_default_properties()
test_invalid_pipeline_parallel()
test_invalid_engine()
test_aliases()
test_vllm_passthrough_properties()
test_long_lora_scaling_factors()
test_invalid_long_lora_scaling_factors()
test_conflicting_djl_vllm_conflicts()

def test_sd_inf2_properties(self):
properties = {
Expand Down
2 changes: 1 addition & 1 deletion engines/python/setup/djl_python_engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -189,7 +189,7 @@ def main():

# noinspection PyBroadException
try:
args = ArgParser.python_engine_args().parse_args(args=sys.argv[1:])
args = ArgParser.python_engine_args().parse_args()
logging.basicConfig(stream=sys.stdout,
format="%(levelname)s::%(message)s",
level=args.log_level.upper())
Expand Down
Loading

0 comments on commit 541bd63

Please sign in to comment.