Skip to content

Commit

Permalink
Render course
Browse files Browse the repository at this point in the history
  • Loading branch information
github-actions[bot] committed Sep 10, 2024
1 parent 16af5d2 commit 5a61799
Show file tree
Hide file tree
Showing 10 changed files with 48 additions and 53 deletions.
54 changes: 26 additions & 28 deletions docs/05-data-visualization.md
Original file line number Diff line number Diff line change
Expand Up @@ -59,9 +59,7 @@ To create a histogram, we use the function [`sns.displot()`](https://seaborn.pyd
sns.displot(data=metadata, x="Age")
```

![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-3-1.png){width=200%}![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-3-2.png){width=200%}

(The `plt.figure()` and `plt.show()` functions are used to render the plots on the website, but you don't need to use it for your exercises.)
![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-3-1.png)<!-- -->![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-3-2.png)<!-- -->

A common parameter to consider when making histogram is how big the bins are. You can specify the bin width via `binwidth` argument, or the number of bins via `bins` argument.

Expand All @@ -70,7 +68,7 @@ A common parameter to consider when making histogram is how big the bins are. Yo
sns.displot(data=metadata, x="Age", binwidth = 10)
```

![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-4-5.png){width=200%}![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-4-6.png){width=200%}
![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-4-5.png)<!-- -->![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-4-6.png)<!-- -->

Our histogram also works for categorical variables, such as "Sex".

Expand All @@ -79,7 +77,7 @@ Our histogram also works for categorical variables, such as "Sex".
sns.displot(data=metadata, x="Sex")
```

![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-5-9.png){width=200%}![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-5-10.png){width=200%}
![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-5-9.png)<!-- -->![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-5-10.png)<!-- -->

**Conditioning on other variables**

Expand All @@ -90,7 +88,7 @@ Sometimes, you want to examine a distribution, such as Age, conditional on other
sns.displot(data=metadata, x="Age", hue="Sex")
```

![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-6-13.png){width=200%}![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-6-14.png){width=200%}
![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-6-13.png)<!-- -->![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-6-14.png)<!-- -->

It is rather hard to tell the groups apart from the coloring. So, we add a new option that we want to separate each bar category via `multiple="dodge"` input argument:

Expand All @@ -99,7 +97,7 @@ It is rather hard to tell the groups apart from the coloring. So, we add a new o
sns.displot(data=metadata, x="Age", hue="Sex", multiple="dodge")
```

![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-7-17.png){width=200%}![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-7-18.png){width=200%}
![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-7-17.png)<!-- -->![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-7-18.png)<!-- -->

Lastly, an alternative to using colors to display the conditional variable, we could make a subplot for each conditional variable's value via `col="Sex"` or `row="Sex"`:

Expand All @@ -108,7 +106,7 @@ Lastly, an alternative to using colors to display the conditional variable, we c
sns.displot(data=metadata, x="Age", col="Sex")
```

![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-8-21.png){width=200%}![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-8-22.png){width=200%}
![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-8-21.png)<!-- -->![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-8-22.png)<!-- -->

You can find a lot more details about distributions and histograms in [the Seaborn tutorial](https://seaborn.pydata.org/tutorial/distributions.html).

Expand All @@ -121,7 +119,7 @@ To visualize two continuous variables, it is common to use a scatterplot or a li
sns.relplot(data=expression, x="KRAS_Exp", y="EGFR_Exp")
```

![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-9-25.png){width=200%}![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-9-26.png){width=200%}
![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-9-25.png)<!-- -->![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-9-26.png)<!-- -->

To conditional on other variables, plotting features are used to distinguish conditional variable values:

Expand All @@ -140,7 +138,7 @@ expression_metadata = expression.merge(metadata)
sns.relplot(data=expression_metadata, x="KRAS_Exp", y="EGFR_Exp", hue="PrimaryOrMetastasis")
```

![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-10-29.png){width=200%}![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-10-30.png){width=200%}
![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-10-29.png)<!-- -->![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-10-30.png)<!-- -->

Here is the scatterplot with different shapes:

Expand All @@ -149,7 +147,7 @@ Here is the scatterplot with different shapes:
sns.relplot(data=expression_metadata, x="KRAS_Exp", y="EGFR_Exp", style="PrimaryOrMetastasis")
```

![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-11-33.png){width=200%}![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-11-34.png){width=200%}
![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-11-33.png)<!-- -->![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-11-34.png)<!-- -->

You can also try plotting with `size=PrimaryOrMetastasis"` if you like. None of these seem pretty effective at distinguishing the two groups, so we will try subplot faceting as we did for the histogram:

Expand All @@ -158,7 +156,7 @@ You can also try plotting with `size=PrimaryOrMetastasis"` if you like. None of
sns.relplot(data=expression_metadata, x="KRAS_Exp", y="EGFR_Exp", col="PrimaryOrMetastasis")
```

![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-12-37.png){width=200%}![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-12-38.png){width=200%}
![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-12-37.png)<!-- -->![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-12-38.png)<!-- -->

You can also conditional on multiple variables by assigning a different variable to the conditioning options:

Expand All @@ -167,7 +165,7 @@ You can also conditional on multiple variables by assigning a different variable
sns.relplot(data=expression_metadata, x="KRAS_Exp", y="EGFR_Exp", hue="PrimaryOrMetastasis", col="AgeCategory")
```

![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-13-41.png){width=200%}![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-13-42.png){width=200%}
![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-13-41.png)<!-- -->![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-13-42.png)<!-- -->

You can find a lot more details about relational plots such as scatterplots and lineplots [in the Seaborn tutorial](https://seaborn.pydata.org/tutorial/relational.html).

Expand Down Expand Up @@ -201,36 +199,36 @@ You can easily change the axis labels and title if you modify the plot object, u


``` python
plt.figure()
exp_plot = sns.relplot(data=expression, x="KRAS_Exp", y="EGFR_Exp")
exp_plot.set(xlabel="KRAS Espression", ylabel="EGFR Expression", title="Gene expression relationship")
```

![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-14-45.png)<!-- -->

``` python
plt.show()
```

![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-14-46.png)<!-- -->![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-14-47.png)<!-- -->
![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-14-45.png)<!-- -->![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-14-46.png)<!-- -->

You can change the color palette by setting adding the `palette` input argument to any of the plots. You can explore available color palettes [here](https://www.practicalpythonfordatascience.com/ap_seaborn_palette):


``` python
plt.figure()
sns.displot(data=metadata, x="Age", hue="Sex", multiple="dodge", palette=sns.color_palette(palette='rainbow')
)
```

![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-15-51.png)<!-- -->
![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-15-49.png)<!-- -->![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-15-50.png)<!-- -->

``` python
plt.show()
## Exercises

Exercise for week 5 can be found [here](https://colab.research.google.com/drive/1kT3zzq2rrhL1vHl01IdW5L1V7v0iK0wY?usp=sharing).


``` r
hist(iris$Sepal.Length)
```

![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-15-52.png)<!-- -->![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-15-53.png)<!-- -->
![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-16-53.png)<!-- -->

## Exercises

Exercise for week 5 can be found [here](https://colab.research.google.com/drive/1kT3zzq2rrhL1vHl01IdW5L1V7v0iK0wY?usp=sharing).
``` r
hist(iris$Sepal.Length)
```

![](resources/images/05-data-visualization_files/figure-docx/unnamed-chunk-17-1.png){width=200%}
Binary file modified docs/Introduction-to-Python.docx
Binary file not shown.
Loading

0 comments on commit 5a61799

Please sign in to comment.