Skip to content
/ DLEPS Public

A Deep Learning based Efficacy Prediction System for drug discovery

Notifications You must be signed in to change notification settings

kekegg/DLEPS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 

Repository files navigation

# DLEPS
A Deep Learning based Efficacy Prediction System for Drug Discovery

# Setup

- ## Install package

This package requires the **rdkit**, **tensorflow >=1.15.0** and **Keras >=2.3.0**.

conda install -c rdkit rdkit
apt-get update
apt install libxrender1
apt install libxext6
pip install nltk
pip install tensorflow==1.15.0
pip install keras==2.3.0

- ## On Code ocean

The supporting files and sample input files for the model locates in the data folder. Results were saved in results folder.

# Run the model

- **Script options**

input files
1. The csv file with all the chemical SMILES in the column with string SMILES as the header, other columns will be copied to the output file and an efficacy score column will be appended.
2. The upregulated gene signatures using ENTREZGENE_ACC in a file without header, each gene occupy a row
3. The downregulated gene signatures using the same format

Conversion of gene names can be accomplished at https://biit.cs.ut.ee/gprofiler/convert

A sample command is as followed:
python driv_DLEPS.py --input=../../data/Brief_Targetmol_natural_product_2719 --output=../../results/np2719_Browning.csv --upset=../../data/BROWNING_up --downset=../../data/BROWNING_down --reverse=False

Batch jobs were put into run_script

Other options include:
    '--input', default=INPUTFILE,
                        'Brief format of chemicals: contains SMILES column. '
    '--use_onehot',  default=True,
                        'If use pre-stored one hot array to save time.'
    '--use_l12k',  default=None,
                        'Use pre-calculated L12k'
    '--upset',  default=None,
                        'Up set of genes'
    '--downset',  default=None,
                        'Down set of genes. '
    '--reverse',  default=True,
                        'If the drug Reverse the Up / Down set of genes. '
    '--output',  default='out.csv',
                        'Output file name. '

Jupyter notebook users may run DLEPS_tutorial.ipynb for better iterative computing and analysis.

Denseweight file is here:
https://kaggle.com/datasets/b0a096e3c550146f2a786f0ffd3c8bd37d68b04c7b09697efd282f91f8f6e36f

About

A Deep Learning based Efficacy Prediction System for drug discovery

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published