-
Notifications
You must be signed in to change notification settings - Fork 35
kekegg/DLEPS
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
# DLEPS A Deep Learning based Efficacy Prediction System for Drug Discovery # Setup - ## Install package This package requires the **rdkit**, **tensorflow >=1.15.0** and **Keras >=2.3.0**. conda install -c rdkit rdkit apt-get update apt install libxrender1 apt install libxext6 pip install nltk pip install tensorflow==1.15.0 pip install keras==2.3.0 - ## On Code ocean The supporting files and sample input files for the model locates in the data folder. Results were saved in results folder. # Run the model - **Script options** input files 1. The csv file with all the chemical SMILES in the column with string SMILES as the header, other columns will be copied to the output file and an efficacy score column will be appended. 2. The upregulated gene signatures using ENTREZGENE_ACC in a file without header, each gene occupy a row 3. The downregulated gene signatures using the same format Conversion of gene names can be accomplished at https://biit.cs.ut.ee/gprofiler/convert A sample command is as followed: python driv_DLEPS.py --input=../../data/Brief_Targetmol_natural_product_2719 --output=../../results/np2719_Browning.csv --upset=../../data/BROWNING_up --downset=../../data/BROWNING_down --reverse=False Batch jobs were put into run_script Other options include: '--input', default=INPUTFILE, 'Brief format of chemicals: contains SMILES column. ' '--use_onehot', default=True, 'If use pre-stored one hot array to save time.' '--use_l12k', default=None, 'Use pre-calculated L12k' '--upset', default=None, 'Up set of genes' '--downset', default=None, 'Down set of genes. ' '--reverse', default=True, 'If the drug Reverse the Up / Down set of genes. ' '--output', default='out.csv', 'Output file name. ' Jupyter notebook users may run DLEPS_tutorial.ipynb for better iterative computing and analysis. Denseweight file is here: https://kaggle.com/datasets/b0a096e3c550146f2a786f0ffd3c8bd37d68b04c7b09697efd282f91f8f6e36f
About
A Deep Learning based Efficacy Prediction System for drug discovery
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published