-
Notifications
You must be signed in to change notification settings - Fork 16k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
community[minor]: Add Ascend NPU optimized Embeddings (#20260)
- **Description:** Add NPU support for embeddings --------- Co-authored-by: Bagatur <[email protected]> Co-authored-by: Bagatur <[email protected]>
- Loading branch information
1 parent
7b10663
commit 398b2b9
Showing
7 changed files
with
335 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
# Ascend | ||
|
||
>[Ascend](https://https://www.hiascend.com/) is Natural Process Unit provide by Huawei | ||
This page covers how to use ascend NPU with LangChain. | ||
|
||
### Installation | ||
|
||
Install using torch-npu using: | ||
|
||
```bash | ||
pip install torch-npu | ||
``` | ||
|
||
Please follow the installation instructions as specified below: | ||
* Install CANN as shown [here](https://www.hiascend.com/document/detail/zh/canncommercial/700/quickstart/quickstart/quickstart_18_0002.html). | ||
|
||
### Embedding Models | ||
|
||
See a [usage example](/docs/integrations/text_embedding/ascend). | ||
|
||
```python | ||
from langchain_community.embeddings import AscendEmbeddings | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,183 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"id": "a636f6f3-00d7-4248-8c36-3da51190e882", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[-0.04053403 -0.05560051 -0.04385472 ... 0.09371872 0.02846981\n", | ||
" -0.00576814]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"from langchain_community.embeddings import AscendEmbeddings\n", | ||
"\n", | ||
"model = AscendEmbeddings(\n", | ||
" model_path=\"/root/.cache/modelscope/hub/yangjhchs/acge_text_embedding\",\n", | ||
" device_id=0,\n", | ||
" query_instruction=\"Represend this sentence for searching relevant passages: \",\n", | ||
")\n", | ||
"emb = model.embed_query(\"hellow\")\n", | ||
"print(emb)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"id": "8d29ddaa-eef3-4a4e-93d8-0f1c13525fb4", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"We strongly recommend passing in an `attention_mask` since your input_ids may be padded. See https://huggingface.co/docs/transformers/troubleshooting#incorrect-output-when-padding-tokens-arent-masked.\n" | ||
] | ||
}, | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[[-0.00348254 0.03098977 -0.00203087 ... 0.08492374 0.03970494\n", | ||
" -0.03372753]\n", | ||
" [-0.02198593 -0.01601127 0.00215684 ... 0.06065163 0.00126425\n", | ||
" -0.03634358]]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"doc_embs = model.embed_documents(\n", | ||
" [\"This is a content of the document\", \"This is another document\"]\n", | ||
")\n", | ||
"print(doc_embs)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"id": "797a720d-c478-4254-be2c-975bc4529f57", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"<coroutine object Embeddings.aembed_query at 0x7f9fac699cb0>" | ||
] | ||
}, | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"model.aembed_query(\"hellow\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"id": "57e62e53-4d2c-4532-9b77-a46bc3da1130", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"array([-0.04053403, -0.05560051, -0.04385472, ..., 0.09371872,\n", | ||
" 0.02846981, -0.00576814], dtype=float32)" | ||
] | ||
}, | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"await model.aembed_query(\"hellow\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"id": "7e260457-8b50-4ca3-8f76-8a76d8bba8c8", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"<coroutine object Embeddings.aembed_documents at 0x7fa093ff1a80>" | ||
] | ||
}, | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"model.aembed_documents(\n", | ||
" [\"This is a content of the document\", \"This is another document\"]\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"id": "ce954b94-aaac-4d2c-80be-b2988c16af6d", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"array([[-0.00348254, 0.03098977, -0.00203087, ..., 0.08492374,\n", | ||
" 0.03970494, -0.03372753],\n", | ||
" [-0.02198593, -0.01601127, 0.00215684, ..., 0.06065163,\n", | ||
" 0.00126425, -0.03634358]], dtype=float32)" | ||
] | ||
}, | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"await model.aembed_documents(\n", | ||
" [\"This is a content of the document\", \"This is another document\"]\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "7823d69d-de79-4f95-90dd-38f4bdeb9bcc", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.14" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
120 changes: 120 additions & 0 deletions
120
libs/community/langchain_community/embeddings/ascend.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,120 @@ | ||
import os | ||
from typing import Any, Dict, List, Optional | ||
|
||
from langchain_core.embeddings import Embeddings | ||
from langchain_core.pydantic_v1 import BaseModel, root_validator | ||
|
||
|
||
class AscendEmbeddings(Embeddings, BaseModel): | ||
""" | ||
Ascend NPU accelerate Embedding model | ||
Please ensure that you have installed CANN and torch_npu. | ||
Example: | ||
from langchain_community.embeddings import AscendEmbeddings | ||
model = AscendEmbeddings(model_path=<path_to_model>, | ||
device_id=0, | ||
query_instruction="Represent this sentence for searching relevant passages: " | ||
) | ||
""" | ||
|
||
"""model path""" | ||
model_path: str | ||
"""Ascend NPU device id.""" | ||
device_id: int = 0 | ||
"""Unstruntion to used for embedding query.""" | ||
query_instruction: str = "" | ||
"""Unstruntion to used for embedding document.""" | ||
document_instruction: str = "" | ||
use_fp16: bool = True | ||
pooling_method: Optional[str] = "cls" | ||
model: Any | ||
tokenizer: Any | ||
|
||
def __init__(self, *args: Any, **kwargs: Any) -> None: | ||
super().__init__(*args, **kwargs) | ||
try: | ||
from transformers import AutoModel, AutoTokenizer | ||
except ImportError as e: | ||
raise ImportError( | ||
"Unable to import transformers, please install with " | ||
"`pip install -U transformers`." | ||
) from e | ||
try: | ||
self.model = AutoModel.from_pretrained(self.model_path).npu().eval() | ||
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path) | ||
except Exception as e: | ||
raise Exception( | ||
f"Failed to load model [self.model_path], due to following error:{e}" | ||
) | ||
|
||
if self.use_fp16: | ||
self.model.half() | ||
self.encode([f"warmup {i} times" for i in range(10)]) | ||
|
||
@root_validator | ||
def validate_environment(cls, values: Dict) -> Dict: | ||
if not os.access(values["model_path"], os.F_OK): | ||
raise FileNotFoundError( | ||
f"Unabled to find valid model path in [{values['model_path']}]" | ||
) | ||
try: | ||
import torch_npu | ||
except ImportError: | ||
raise ModuleNotFoundError("torch_npu not found, please install torch_npu") | ||
except Exception as e: | ||
raise e | ||
try: | ||
torch_npu.npu.set_device(values["device_id"]) | ||
except Exception as e: | ||
raise Exception(f"set device failed due to {e}") | ||
return values | ||
|
||
def encode(self, sentences: Any) -> Any: | ||
inputs = self.tokenizer( | ||
sentences, | ||
padding=True, | ||
truncation=True, | ||
return_tensors="pt", | ||
max_length=512, | ||
) | ||
try: | ||
import torch | ||
except ImportError as e: | ||
raise ImportError( | ||
"Unable to import torch, please install with " "`pip install -U torch`." | ||
) from e | ||
last_hidden_state = self.model( | ||
inputs.input_ids.npu(), inputs.attention_mask.npu(), return_dict=True | ||
).last_hidden_state | ||
tmp = self.pooling(last_hidden_state, inputs["attention_mask"].npu()) | ||
embeddings = torch.nn.functional.normalize(tmp, dim=-1) | ||
return embeddings.cpu().detach().numpy() | ||
|
||
def pooling(self, last_hidden_state: Any, attention_mask: Any = None) -> Any: | ||
try: | ||
import torch | ||
except ImportError as e: | ||
raise ImportError( | ||
"Unable to import torch, please install with " "`pip install -U torch`." | ||
) from e | ||
if self.pooling_method == "cls": | ||
return last_hidden_state[:, 0] | ||
elif self.pooling_method == "mean": | ||
s = torch.sum( | ||
last_hidden_state * attention_mask.unsqueeze(-1).float(), dim=-1 | ||
) | ||
d = attention_mask.sum(dim=1, keepdim=True).float() | ||
return s / d | ||
else: | ||
raise NotImplementedError( | ||
f"Pooling method [{self.pooling_method}] not implemented" | ||
) | ||
|
||
def embed_documents(self, texts: List[str]) -> List[List[float]]: | ||
return self.encode([self.document_instruction + text for text in texts]) | ||
|
||
def embed_query(self, text: str) -> List[float]: | ||
return self.encode([self.query_instruction + text])[0] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters