Skip to content

langyayue99/open-entity-relation-extraction

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Chinese Open Entity Relation Extraction

The content of this work is to extract knowledge triples (entities and relations) based on dependency syntax for open domain text.

本工作内容为基于依存句法分析,实现面向开放域文本的知识三元组抽取(实体和关系抽取)。

Welcome to watch, star or fork.

Extraction Example

"中国国家主席习近平访问韩国,并在首尔大学发表演讲"

We can extract knowledge triples from the sentence as follows:

  • (中国, 国家主席, 习近平)
  • (习近平, 访问, 韩国)
  • (习近平, 发表演讲, 首尔大学)

Project Structure

knowledge_extraction/
|-- code/  # code directory
|   |-- bean/
|   |-- core/
|   |-- demo/  # procedure entry
|   |-- tool/
|-- data/ # data directory
|   |-- input_text.txt  # input text file
|   |-- knowledge_triple.json  # output knowledge triples file
|-- model/  # ltp models, can be downloaded from http://ltp.ai/download.html, select ltp_data_v3.4.0.zip
|-- resource  # dictionaries dirctory
|-- requirements.txt  # dependent python libraries
|-- README.md  # project description

Requirements

This repo was tested on Python 3.5+. The requirements are:

  • pynlpir>=0.5.2
  • pyltp>=0.2.1

Install Dependent libraries

pip install -r requirements.txt

Entry procedure

cd ./code/demo/
python extract_demo.py

Main Implementation Content

DSNF

References

If you use the code, please kindly cite the following paper:

Jia S, Li M, Xiang Y. Chinese Open Relation Extraction and Knowledge Base Establishment[J]. ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP), 2018, 17(3): 15.

About

Chinese Open Entity Relation Extraction

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%