Update lint.yml #2
Annotations
73 errors and 2 warnings
/home/runner/work/linc-convert/linc-convert/scripts/utils.py#L14
Returns
-------
orientation : str
A three-letter permutation of {('R', 'L'), ('A', 'P'), ('S', 'I')}
"""
- orientation = {
- 'coronal': 'LI',
- 'axial': 'LP',
- 'sagittal': 'PI',
- }.get(orientation.lower(), orientation).upper()
+ orientation = (
+ {
+ "coronal": "LI",
+ "axial": "LP",
+ "sagittal": "PI",
+ }
+ .get(orientation.lower(), orientation)
+ .upper()
+ )
if len(orientation) == 2:
- if 'L' not in orientation and 'R' not in orientation:
- orientation += 'R'
- if 'P' not in orientation and 'A' not in orientation:
- orientation += 'A'
- if 'I' not in orientation and 'S' not in orientation:
- orientation += 'S'
+ if "L" not in orientation and "R" not in orientation:
+ orientation += "R"
+ if "P" not in orientation and "A" not in orientation:
+ orientation += "A"
+ if "I" not in orientation and "S" not in orientation:
+ orientation += "S"
return orientation
def orientation_to_affine(orientation, vxw=1, vxh=1, vxd=1):
orientation = orientation_ensure_3d(orientation)
affine = np.zeros([4, 4])
vx = np.asarray([vxw, vxh, vxd])
for i in range(3):
letter = orientation[i]
- sign = -1 if letter in 'LPI' else 1
- letter = {'L': 'R', 'P': 'A', 'I': 'S'}.get(letter, letter)
- index = list('RAS').index(letter)
+ sign = -1 if letter in "LPI" else 1
+ letter = {"L": "R", "P": "A", "I": "S"}.get(letter, letter)
+ index = list("RAS").index(letter)
affine[index, i] = sign * vx[i]
return affine
def center_affine(affine, shape):
|
scripts/jp2_to_zarr.py#L27
'nibabel as nib' imported but unused (F401)
|
/home/runner/work/linc-convert/linc-convert/scripts/utils.py#L62
def make_compressor(name, **prm):
if not isinstance(name, str):
return name
name = name.lower()
- if name == 'blosc':
+ if name == "blosc":
Compressor = numcodecs.Blosc
- elif name == 'zlib':
+ elif name == "zlib":
Compressor = numcodecs.Zlib
else:
- raise ValueError('Unknown compressor', name)
+ raise ValueError("Unknown compressor", name)
return Compressor(**prm)
ome_valid_units = {
- 'space': [
- 'angstrom',
- 'attometer',
- 'centimeter',
- 'decimeter',
- 'exameter',
- 'femtometer',
- 'foot',
- 'gigameter',
- 'hectometer',
- 'inch',
- 'kilometer',
- 'megameter',
- 'meter',
- 'micrometer',
- 'mile',
- 'millimeter',
- 'nanometer',
- 'parsec',
- 'petameter',
- 'picometer',
- 'terameter',
- 'yard',
- 'yoctometer',
- 'yottameter',
- 'zeptometer',
- 'zettameter',
+ "space": [
+ "angstrom",
+ "attometer",
+ "centimeter",
+ "decimeter",
+ "exameter",
+ "femtometer",
+ "foot",
+ "gigameter",
+ "hectometer",
+ "inch",
+ "kilometer",
+ "megameter",
+ "meter",
+ "micrometer",
+ "mile",
+ "millimeter",
+ "nanometer",
+ "parsec",
+ "petameter",
+ "picometer",
+ "terameter",
+ "yard",
+ "yoctometer",
+ "yottameter",
+ "zeptometer",
+ "zettameter",
],
- 'time': [
- 'attosecond',
- 'centisecond',
- 'day',
- 'decisecond',
- 'exasecond',
- 'femtosecond',
- 'gigasecond',
- 'hectosecond',
- 'hour',
- 'kilosecond',
- 'megasecond',
- 'microsecond',
- 'millisecond',
- 'minute',
- 'nanosecond',
- 'petasecond',
- 'picosecond',
- 'second',
- 'terasecond',
- 'yoctosecond',
- 'yottasecond',
- 'zeptosecond',
- 'zettasecond',
- ]
+ "time": [
+ "attosecond",
+ "centisecond",
+ "day",
+ "decisecond",
+ "exasecond",
+ "femtosecond",
+ "gigasecond",
+ "hectosecond",
+ "hour",
+ "kilosecond",
+ "megasecond",
+ "microsecond",
+ "millisecond",
+ "minute",
+ "nanosecond",
+ "petasecond",
+ "picosecond",
+ "second",
+ "terasecond",
+ "yoctosecond",
+ "yottasecond",
+ "zeptosecond",
+ "zettasecond",
+ ],
}
nifti_valid_units = [
- 'unknown',
- 'meter',
- 'mm',
- 'micron',
- 'sec',
- 'msec',
- 'usec',
- 'hz',
- 'ppm',
- 'rads',
+ "unknown",
+ "meter",
+ "mm",
+ "micron",
+ "sec",
+ "msec",
+ "usec",
+ "hz",
+ "ppm",
+ "rads",
]
si_prefix_short2long = {
- 'Q': 'quetta',
- 'R': 'ronna',
- 'Y': 'yotta',
- 'Z': 'zetta',
- 'E': 'exa',
- 'P': 'peta',
- 'T': 'tera',
- 'G': 'giga',
- 'M': 'mega',
- 'K': 'kilo',
- 'k': 'kilo',
- 'H': 'hecto',
- 'h': 'hecto',
- 'D': 'deca',
- 'da': 'deca',
- 'd': 'deci',
- 'c': 'centi',
- 'm': 'milli',
- 'u': 'micro',
- 'μ': 'micro',
- 'n': 'nano',
- 'p': 'pico',
- 'f': 'femto',
- 'a': 'atto',
- 'z': 'zepto',
- 'y': 'yocto',
- 'r': 'ronto',
- 'q': 'quecto',
-}
-
-si_prefix_long2short = {
- long: short
- for short, long in si_prefix_short2long.items()
-}
+ "Q": "quetta",
+ "R": "ronna",
+ "Y": "yotta",
+ "Z": "zetta",
+ "E": "exa",
+ "P": "peta",
+ "T": "tera",
+ "G": "giga",
+ "M": "mega",
+ "K": "kilo",
+ "k": "kilo",
+ "H": "hecto",
+ "h": "hecto",
+ "D": "deca",
+ "da": "deca",
+ "d": "deci",
+ "c": "centi",
+ "m": "milli",
+ "u": "micro",
+ "μ": "micro",
+ "n": "nano",
+ "p": "pico",
+ "f": "femto",
+ "a": "atto",
+ "z": "zepto",
+ "y": "yocto",
+ "r": "ronto",
+ "q": "quecto",
+}
+
+si_prefix_long2short = {long: short for short, long in si_prefix_short2long.items()}
si_prefix_exponent = {
- 'Q': 30,
- 'R': 27,
- 'Y': 24,
- 'Z': 21,
- 'E': 18,
- 'P': 15,
- 'T': 12,
- 'G': 9,
- 'M': 6,
- 'K': 3,
- 'k': 3,
- 'H': 2,
- 'h': 2,
- 'D': 1,
- 'da': 1,
- '': 0,
- 'd': -1,
- 'c': -2,
- 'm': -3,
- 'u': -6,
- 'μ': -6,
- 'n': -9,
- 'p': -12,
- 'f': -15,
- 'a': -18,
- 'z': -21,
- 'y': -24,
- 'r': -27,
- 'q': -30,
+ "Q": 30,
+ "R": 27,
+ "Y": 24,
+ "Z": 21,
+ "E": 18,
+ "P": 15,
+ "T": 12,
+ "G": 9,
+ "M": 6,
+ "K": 3,
+ "k": 3,
+ "H": 2,
+ "h": 2,
+ "D": 1,
+ "da": 1,
+ "": 0,
+ "d": -1,
+ "c": -2,
+ "m": -3,
+ "u": -6,
+ "μ": -6,
+ "n": -9,
+ "p": -12,
+ "f": -15,
+ "a": -18,
+ "z": -21,
+ "y": -24,
+ "r": -27,
+ "q": -30,
}
unit_space_short2long = {
- short + 'm': long + 'meter'
- for short, long in si_prefix_short2long.items()
-}
-unit_space_short2long.update({
- 'm': 'meter',
- 'mi': 'mile',
- 'yd': 'yard',
- 'ft': 'foot',
- 'in': 'inch',
- "'": 'foot',
- '"': 'inch',
- 'Å': 'angstrom',
- 'pc': 'parsec',
-})
-unit_space_long2short = {
- long: short
- for short, long in unit_space_short2long.items()
-}
-unit_space_long2short['micron'] = 'u'
+ short + "m": long + "meter" for short, long in si_prefix_short2long.items()
+}
+unit_space_short2long.update(
+ {
+ "m": "meter",
+ "mi": "mile",
+ "yd": "yard",
+ "ft": "foot",
+ "in": "inch",
+ "'": "foot",
+ '"': "inch",
+ "Å": "angstrom",
+ "pc": "parsec",
+ }
+)
+unit_space_long2short = {long: short for short, long in unit_space_short2long.items()}
+unit_space_long2short["micron"] = "u"
unit_time_short2long = {
- short + 's': long + 'second'
- for short, long in si_prefix_short2long.items()
-}
-unit_time_short2long.update({
- 'y': 'year',
- 'd': 'day',
- 'h': 'hour',
- 'm': 'minute',
- 's': 'second',
-})
-unit_time_long2short = {
- long: short
- for short, long in unit_time_short2long.items()
-}
+ short + "s": long + "second" for short, long in si_prefix_short2long.items()
+}
+unit_time_short2long.update(
+ {
+ "y": "year",
+ "d": "day",
+ "h": "hour",
+ "m": "minute",
+ "s": "second",
+ }
+)
+unit_time_long2short = {long: short for short, long in unit_time_short2long.items()}
unit_space_scale = {
- prefix + 'm': 10**exponent
- for prefix, exponent in si_prefix_exponent.items()
-}
-unit_space_scale.update({
- 'mi': 1609.344,
- 'yd': 0.9144,
- 'ft': 0.3048,
- "'": 0.3048,
- 'in': 25.4E-3,
- '"': 25.4E-3,
- 'Å': 1E-10,
- 'pc': 3.0857E16,
-})
+ prefix + "m": 10**exponent for prefix, exponent in si_prefix_exponent.items()
+}
+unit_space_scale.update(
+ {
+ "mi": 1609.344,
+ "yd": 0.9144,
+ "ft": 0.3048,
+ "'": 0.3048,
+ "in": 25.4e-3,
+ '"': 25.4e-3,
+ "Å": 1e-10,
+ "pc": 3.0857e16,
+ }
+)
unit_time_scale = {
- prefix + 's': 10**exponent
- for prefix, exponent in si_prefix_exponent.items()
-}
-unit_time_scale.update({
- 'y': 365.25*24*60*60,
- 'd': 24*60*60,
- 'h': 60*60,
- 'm': 60,
-})
+ prefix + "s": 10**exponent for prefix, exponent in si_prefix_exponent.items()
+}
+unit_time_scale.update(
+ {
+ "y": 365.25 * 24 * 60 * 60,
+ "d": 24 * 60 * 60,
+ "h": 60 * 60,
+ "m": 60,
+ }
+)
def convert_unit(value, src, dst):
src = unit_to_scale(src)
dst = unit_to_scale(dst)
|
scripts/jp2_to_zarr.py#L105
F-string is missing placeholders (F541)
|
/home/runner/work/linc-convert/linc-convert/scripts/utils.py#L287
unit = unit_space_short2long[unit]
elif unit in unit_time_short2long:
unit = unit_time_short2long[unit]
elif unit in si_prefix_short2long:
unit = si_prefix_short2long[unit]
- if unit not in (*ome_valid_units['space'], *ome_valid_units['time']):
- raise ValueError('Unknow unit')
+ if unit not in (*ome_valid_units["space"], *ome_valid_units["time"]):
+ raise ValueError("Unknow unit")
return unit
def to_nifti_unit(unit):
unit = to_ome_unit(unit)
return {
- 'meter': 'meter',
- 'millimeter': 'mm',
- 'micrometer': 'micron',
- 'second': 'sec',
- 'millisecond': 'msec',
- 'microsecond': 'usec',
- }.get(unit, 'unknown')
+ "meter": "meter",
+ "millimeter": "mm",
+ "micrometer": "micron",
+ "second": "sec",
+ "millisecond": "msec",
+ "microsecond": "usec",
+ }.get(unit, "unknown")
def unit_to_scale(unit):
if unit in unit_space_long2short:
unit = unit_space_long2short[unit]
|
scripts/jp2_to_zarr.py#L108
Line too long (114 > 79 characters) (E501)
|
scripts/jp2_to_zarr.py#L130
Multiple spaces after keyword (E271)
|
/home/runner/work/linc-convert/linc-convert/scripts/utils.py#L318
elif unit in unit_time_scale:
unit = unit_time_scale[unit]
elif unit in si_prefix_exponent:
unit = 10 ** si_prefix_exponent[unit]
if isinstance(unit, str):
- raise ValueError('Unknown unit', unit)
+ raise ValueError("Unknown unit", unit)
return unit
|
scripts/jp2_to_zarr.py#L132
Line too long (89 > 79 characters) (E501)
|
/home/runner/work/linc-convert/linc-convert/scripts/oct_mat_to_zarr.py#L10
scipy
zarr
nibabel
cyclopts
"""
+
import ast
import json
import math
import os
import re
|
scripts/jp2_to_zarr.py#L132
Trailing whitespace (W291)
|
scripts/jp2_to_zarr.py#L136
Too many blank lines (2) (E303)
|
/home/runner/work/linc-convert/linc-convert/scripts/oct_mat_to_zarr.py#L29
import numpy as np
import zarr
from scipy.io import loadmat
from utils import (
- ceildiv, make_compressor, convert_unit, to_ome_unit, to_nifti_unit,
- orientation_to_affine, center_affine
+ ceildiv,
+ make_compressor,
+ convert_unit,
+ to_ome_unit,
+ to_nifti_unit,
+ orientation_to_affine,
+ center_affine,
)
app = cyclopts.App(help_format="markdown")
|
scripts/jp2_to_zarr.py#L148
Too many blank lines (2) (E303)
|
scripts/jp2_to_zarr.py#L151
Multiple spaces before operator (E221)
|
/home/runner/work/linc-convert/linc-convert/scripts/oct_mat_to_zarr.py#L43
@wraps(func)
def wrapper(inp, out=None, **kwargs):
if out is None:
out = os.path.splitext(inp[0])[0]
- out += '.nii.zarr' if kwargs.get('nii', False) else '.ome.zarr'
- kwargs['nii'] = kwargs.get('nii', False) or out.endswith('.nii.zarr')
- with mapmat(inp, kwargs.get('key', None)) as dat:
+ out += ".nii.zarr" if kwargs.get("nii", False) else ".ome.zarr"
+ kwargs["nii"] = kwargs.get("nii", False) or out.endswith(".nii.zarr")
+ with mapmat(inp, kwargs.get("key", None)) as dat:
return func(dat, out, **kwargs)
return wrapper
@app.default
@AutoMap
def convert(
- inp: List[str],
- out: Optional[str] = None,
- *,
- key: Optional[str] = None,
- meta: str = None,
- chunk: int = 128,
- compressor: str = 'blosc',
- compressor_opt: str = "{}",
- max_load: int = 128,
- max_levels: int = 5,
- no_pool: Optional[int] = None,
- nii: bool = False,
- orientation: str = 'RAS',
- center: bool = True,
+ inp: List[str],
+ out: Optional[str] = None,
+ *,
+ key: Optional[str] = None,
+ meta: str = None,
+ chunk: int = 128,
+ compressor: str = "blosc",
+ compressor_opt: str = "{}",
+ max_load: int = 128,
+ max_levels: int = 5,
+ no_pool: Optional[int] = None,
+ nii: bool = False,
+ orientation: str = "RAS",
+ center: bool = True,
):
"""
This command converts OCT volumes stored in raw matlab files
into a pyramidal OME-ZARR (or NIfTI-Zarr) hierarchy.
|
/home/runner/work/linc-convert/linc-convert/scripts/oct_mat_to_zarr.py#L108
if isinstance(compressor_opt, str):
compressor_opt = ast.literal_eval(compressor_opt)
# Write OME-Zarr multiscale metadata
if meta:
- print('Write JSON')
- with open(meta, 'r') as f:
+ print("Write JSON")
+ with open(meta, "r") as f:
meta_txt = f.read()
meta_json = make_json(meta_txt)
- path_json = '.'.join(out.split('.')[:-2]) + '.json'
- with open(path_json, 'w') as f:
+ path_json = ".".join(out.split(".")[:-2]) + ".json"
+ with open(path_json, "w") as f:
json.dump(meta_json, f, indent=4)
- vx = meta_json['PixelSize']
- unit = meta_json['PixelSizeUnits']
+ vx = meta_json["PixelSize"]
+ unit = meta_json["PixelSizeUnits"]
else:
vx = [1] * 3
- unit = 'um'
+ unit = "um"
# Prepare Zarr group
omz = zarr.storage.DirectoryStore(out)
omz = zarr.group(store=omz, overwrite=True)
|
scripts/jp2_to_zarr.py#L157
Trailing whitespace (W291)
|
scripts/jp2_to_zarr.py#L162
Line too long (110 > 79 characters) (E501)
|
/home/runner/work/linc-convert/linc-convert/scripts/oct_mat_to_zarr.py#L131
raise Exception("Input is not a numpy array. This is likely unexpected")
if len(inp.shape) < 3:
raise Exception("Input array is not 3d")
# Prepare chunking options
opt = {
- 'dimension_separator': r'/',
- 'order': 'F',
- 'dtype': np.dtype(inp.dtype).str,
- 'fill_value': None,
- 'compressor': make_compressor(compressor, **compressor_opt),
+ "dimension_separator": r"/",
+ "order": "F",
+ "dtype": np.dtype(inp.dtype).str,
+ "fill_value": None,
+ "compressor": make_compressor(compressor, **compressor_opt),
}
inp_chunk = [min(x, max_load) for x in inp.shape]
nk = ceildiv(inp.shape[0], inp_chunk[0])
nj = ceildiv(inp.shape[1], inp_chunk[1])
ni = ceildiv(inp.shape[2], inp_chunk[2])
- nblevels = min([
- int(math.ceil(math.log2(x)))
- for i, x in enumerate(inp.shape)
- if i != no_pool
- ])
+ nblevels = min(
+ [int(math.ceil(math.log2(x))) for i, x in enumerate(inp.shape) if i != no_pool]
+ )
nblevels = min(nblevels, int(math.ceil(math.log2(max_load))))
nblevels = min(nblevels, max_levels)
# create all arrays in the group
shape_level = inp.shape
for level in range(nblevels):
- opt['chunks'] = [min(x, chunk) for x in shape_level]
+ opt["chunks"] = [min(x, chunk) for x in shape_level]
omz.create_dataset(str(level), shape=shape_level, **opt)
- shape_level = [
- x if i == no_pool else x // 2
- for i, x in enumerate(shape_level)
- ]
+ shape_level = [x if i == no_pool else x // 2 for i, x in enumerate(shape_level)]
# iterate across input chunks
for i, j, k in product(range(ni), range(nj), range(nk)):
level_chunk = inp_chunk
loaded_chunk = inp[
- k * level_chunk[0]:(k + 1) * level_chunk[0],
- j * level_chunk[1]:(j + 1) * level_chunk[1],
- i * level_chunk[2]:(i + 1) * level_chunk[2],
- ]
+ k * level_chunk[0] : (k + 1) * level_chunk[0],
+ j * level_chunk[1] : (j + 1) * level_chunk[1],
+ i * level_chunk[2] : (i + 1) * level_chunk[2],
+ ]
for level in range(nblevels):
out_level = omz[str(level)]
- print(f'[{i + 1:03d}, {j + 1:03d}, {k + 1:03d}]', '/',
- f'[{ni:03d}, {nj:03d}, {nk:03d}]',
- f'({1 + level}/{nblevels})', end='\r')
+ print(
+ f"[{i + 1:03d}, {j + 1:03d}, {k + 1:03d}]",
+ "/",
+ f"[{ni:03d}, {nj:03d}, {nk:03d}]",
+ f"({1 + level}/{nblevels})",
+ end="\r",
+ )
# save current chunk
out_level[
- k * level_chunk[0]:k * level_chunk[0] + loaded_chunk.shape[0],
- j * level_chunk[1]:j * level_chunk[1] + loaded_chunk.shape[1],
- i * level_chunk[2]:i * level_chunk[2] + loaded_chunk.shape[2],
+ k * level_chunk[0] : k * level_chunk[0] + loaded_chunk.shape[0],
+ j * level_chunk[1] : j * level_chunk[1] + loaded_chunk.shape[1],
+ i * level_chunk[2] : i * level_chunk[2] + loaded_chunk.shape[2],
] = loaded_chunk
# ensure divisible by 2
loaded_chunk = loaded_chunk[
slice(2 * (loaded_chunk.shape[0] // 2) if 0 != no_pool else None),
slice(2 * (loaded_chunk.shape[1] // 2) if 1 != no_pool else None),
slice(2 * (loaded_chunk.shape[2] // 2) if 2 != no_pool else None),
]
# mean pyramid (average each 2x2x2 patch)
if no_pool == 0:
loaded_chunk = (
- loaded_chunk[:, 0::2, 0::2] +
- loaded_chunk[:, 0::2, 1::2] +
- loaded_chunk[:, 1::2, 0::2] +
- loaded_chunk[:, 1::2, 1::2]
+ loaded_chunk[:, 0::2, 0::2]
+ + loaded_chunk[:, 0::2, 1::2]
+ + loaded_chunk[:, 1::2, 0::2]
+ + loaded_chunk[:, 1::2, 1::2]
) / 4
elif no_pool == 1:
loaded_chunk = (
- loaded_chunk[0::2, :, 0::2] +
- loaded_chunk[0::2, :, 1::2] +
- loaded_chunk[1::2, :, 0::2] +
- loaded_chunk[1::2, :, 1::2]
+ loaded_chunk[0::2, :, 0::2]
+ + loaded_chunk[0::2, :, 1::2]
+ + loaded_chunk[1::2, :, 0::2]
+ + loaded_chunk[1::2, :, 1::2]
) / 4
elif no_pool == 2:
loaded_chunk = (
- loaded_chunk[0::2, 0::2, :] +
- loaded_chunk[0::2, 1::2, :] +
- loaded_chunk[1::2, 0::2, :] +
- loaded_chunk[1::2, 1::2, :]
+ loaded_chunk[0::2, 0::2, :]
+ + loaded_chunk[0::2, 1::2, :]
+ + loaded_chunk[1::2, 0::2, :]
+ + loaded_chunk[1::2, 1::2, :]
) / 4
else:
loaded_chunk = (
- loaded_chunk[0::2, 0::2, 0::2] +
- loaded_chunk[0::2, 0::2, 1::2] +
- loaded_chunk[0::2, 1::2, 0::2] +
- loaded_chunk[0::2, 1::2, 1::2] +
- loaded_chunk[1::2, 0::2, 0::2] +
- loaded_chunk[1::2, 0::2, 1::2] +
- loaded_chunk[1::2, 1::2, 0::2] +
- loaded_chunk[1::2, 1::2, 1::2]
+ loaded_chunk[0::2, 0::2, 0::2]
+ + loaded_chunk[0::2, 0::2, 1::2]
+ + loaded_chunk[0::2, 1::2, 0::2]
+ + loaded_chunk[0::2, 1::2, 1::2]
+ + loaded_chunk[1::2, 0::2, 0::2]
+ + loaded_chunk[1::2, 0::2, 1::2]
+ + loaded_chunk[1::2, 1::2, 0::2]
+ + loaded_chunk[1::2, 1::2, 1::2]
) / 8
level_chunk = [
- x if i == no_pool else x // 2
- for i, x in enumerate(level_chunk)
+ x if i == no_pool else x // 2 for i, x in enumerate(level_chunk)
]
- print('')
+ print("")
# Write OME-Zarr multiscale metadata
- print('Write metadata')
+ print("Write metadata")
print(unit)
ome_unit = to_ome_unit(unit)
- multiscales = [{
- 'version': '0.4',
- 'axes': [
- {"name": "z", "type": "space", "unit": ome_unit},
- {"name": "y", "type": "space", "unit": ome_unit},
- {"name": "x", "type": "space", "unit": ome_unit}
- ],
- 'datasets': [],
- 'type': ('2x2x2' if no_pool is None else '2x2') + 'mean window',
- 'name': '',
- }]
+ multiscales = [
+ {
+ "version": "0.4",
+ "axes": [
+ {"name": "z", "type": "space", "unit": ome_unit},
+ {"name": "y", "type": "space", "unit": ome_unit},
+ {"name": "x", "type": "space", "unit": ome_unit},
+ ],
+ "datasets": [],
+ "type": ("2x2x2" if no_pool is None else "2x2") + "mean window",
+ "name": "",
+ }
+ ]
for n in range(nblevels):
- multiscales[0]['datasets'].append({})
- level = multiscales[0]['datasets'][-1]
+ multiscales[0]["datasets"].append({})
+ level = multiscales[0]["datasets"][-1]
level["path"] = str(n)
# With a moving window, the scaling factor is exactly 2, and
# the edges of the top-left voxel are aligned
level["coordinateTransformations"] = [
{
"type": "scale",
"scale": [
- (1 if no_pool == 0 else 2 ** n) * vx[0],
- (1 if no_pool == 1 else 2 ** n) * vx[1],
- (1 if no_pool == 2 else 2 ** n) * vx[2],
- ]
+ (1 if no_pool == 0 else 2**n) * vx[0],
+ (1 if no_pool == 1 else 2**n) * vx[1],
+ (1 if no_pool == 2 else 2**n) * vx[2],
+ ],
},
{
"type": "translation",
"translation": [
- (0 if no_pool == 0 else (2 ** n - 1)) * vx[0] * 0.5,
- (0 if no_pool == 1 else (2 ** n - 1)) * vx[1] * 0.5,
- (0 if no_pool == 2 else (2 ** n - 1)) * vx[2] * 0.5,
- ]
- }
+ (0 if no_pool == 0 else (2**n - 1)) * vx[0] * 0.5,
+ (0 if no_pool == 1 else (2**n - 1)) * vx[1] * 0.5,
+ (0 if no_pool == 2 else (2**n - 1)) * vx[2] * 0.5,
+ ],
+ },
]
multiscales[0]["coordinateTransformations"] = [
- {
- "scale": [1.0] * 3,
- "type": "scale"
- }
+ {"scale": [1.0] * 3, "type": "scale"}
]
omz.attrs["multiscales"] = multiscales
if not nii:
- print('done.')
+ print("done.")
return
# Write NIfTI-Zarr header
# NOTE: we use nifti2 because dimensions typically do not fit in a short
# TODO: we do not write the json zattrs, but it should be added in
# once the nifti-zarr package is released
- shape = list(reversed(omz['0'].shape))
+ shape = list(reversed(omz["0"].shape))
affine = orientation_to_affine(orientation, *vx[::-1])
if center:
affine = center_affine(affine, shape[:3])
header = nib.Nifti2Header()
header.set_data_shape(shape)
- header.set_data_dtype(omz['0'].dtype)
+ header.set_data_dtype(omz["0"].dtype)
header.set_qform(affine)
header.set_sform(affine)
header.set_xyzt_units(nib.nifti1.unit_codes.code[to_nifti_unit(unit)])
- header.structarr['magic'] = b'nz2\0'
- header = np.frombuffer(header.structarr.tobytes(), dtype='u1')
+ header.structarr["magic"] = b"nz2\0"
+ header = np.frombuffer(header.structarr.tobytes(), dtype="u1")
opt = {
- 'chunks': [len(header)],
- 'dimension_separator': r'/',
- 'order': 'F',
- 'dtype': '|u1',
- 'fill_value': None,
- 'compressor': None,
+ "chunks": [len(header)],
+ "dimension_separator": r"/",
+ "order": "F",
+ "dtype": "|u1",
+ "fill_value": None,
+ "compressor": None,
}
- omz.create_dataset('nifti', data=header, shape=shape, **opt)
- print('done.')
+ omz.create_dataset("nifti", data=header, shape=shape, **opt)
+ print("done.")
@contextmanager
def mapmat(fnames, key=None):
"""Load or memory-map an array stored in a .mat file"""
loaded_data = []
for fname in fnames:
try:
# "New" .mat file
- f = h5py.File(fname, 'r')
+ f = h5py.File(fname, "r")
except Exception:
# "Old" .mat file
f = loadmat(fname)
if key is None:
if len(f.keys()) > 1:
- warn(f'More than one key in .mat file {fname}, arbitrarily loading "{f.keys[0]}"')
+ warn(
+ f'More than one key in .mat file {fname}, arbitrarily loading "{f.keys[0]}"'
+ )
key = f.keys()[0]
if key not in f.keys():
raise Exception(f"Key {key} not found in file {fname}")
if len(fnames) == 1:
yield f.get(key)
- if hasattr(f, 'close'):
+ if hasattr(f, "close"):
f.close()
break
loaded_data.append(f.get(key))
yield np.stack(loaded_data, axis=-1)
|
/home/runner/work/linc-convert/linc-convert/scripts/oct_mat_to_zarr.py#L359
Slice #:23
Modality: dBI
"""
def parse_value_unit(string, n=None):
- number = r'-?(\d+\.?\d*|\d*\.?\d+)(E-?\d+)?'
- value = 'x'.join([number] * (n or 1))
- match = re.fullmatch(r'(?P<value>' + value + r')(?P<unit>\w*)', string)
- value, unit = match.group('value'), match.group('unit')
- value = list(map(float, value.split('x')))
+ number = r"-?(\d+\.?\d*|\d*\.?\d+)(E-?\d+)?"
+ value = "x".join([number] * (n or 1))
+ match = re.fullmatch(r"(?P<value>" + value + r")(?P<unit>\w*)", string)
+ value, unit = match.group("value"), match.group("unit")
+ value = list(map(float, value.split("x")))
if n is None:
value = value[0]
return value, unit
meta = {
- 'BodyPart': 'BRAIN',
- 'Environment': 'exvivo',
- 'SampleStaining': 'none',
+ "BodyPart": "BRAIN",
+ "Environment": "exvivo",
+ "SampleStaining": "none",
}
- for line in oct_meta.split('\n'):
- if ':' not in line:
+ for line in oct_meta.split("\n"):
+ if ":" not in line:
continue
- key, value = line.split(':')
+ key, value = line.split(":")
key, value = key.strip(), value.strip()
- if key == 'Image medium':
+ if key == "Image medium":
parts = value.split()
- if 'TDE' in parts:
- parts[parts.index('TDE')] = "2,2' Thiodiethanol (TDE)"
- meta['SampleMedium'] = ' '.join(parts)
-
- elif key == 'Center Wavelength':
- value, unit = parse_value_unit(value)
- meta['Wavelength'] = value
- meta['WavelengthUnit'] = unit
-
- elif key == 'Axial resolution':
- value, unit = parse_value_unit(value)
- meta['ResolutionAxial'] = value
- meta['ResolutionAxialUnit'] = unit
-
- elif key == 'Lateral resolution':
- value, unit = parse_value_unit(value)
- meta['ResolutionLateral'] = value
- meta['ResolutionLateralUnit'] = unit
-
- elif key == 'Voxel size':
+ if "TDE" in parts:
+ parts[parts.index("TDE")] = "2,2' Thiodiethanol (TDE)"
+ meta["SampleMedium"] = " ".join(parts)
+
+ elif key == "Center Wavelength":
+ value, unit = parse_value_unit(value)
+ meta["Wavelength"] = value
+ meta["WavelengthUnit"] = unit
+
+ elif key == "Axial resolution":
+ value, unit = parse_value_unit(value)
+ meta["ResolutionAxial"] = value
+ meta["ResolutionAxialUnit"] = unit
+
+ elif key == "Lateral resolution":
+ value, unit = parse_value_unit(value)
+ meta["ResolutionLateral"] = value
+ meta["ResolutionLateralUnit"] = unit
+
+ elif key == "Voxel size":
value, unit = parse_value_unit(value, n=3)
- meta['PixelSize'] = value
- meta['PixelSizeUnits'] = unit
-
- elif key == 'Depth focus range':
- value, unit = parse_value_unit(value)
- meta['DepthFocusRange'] = value
- meta['DepthFocusRangeUnit'] = unit
-
- elif key == 'Number of focuses':
- value, unit = parse_value_unit(value)
- meta['FocusCount'] = int(value)
-
- elif key == 'Slice thickness':
- value, unit = parse_value_unit(value)
- unit = convert_unit(value, unit[:-1], 'u')
- meta['SliceThickness'] = value
-
- elif key == 'Number of slices':
- value, unit = parse_value_unit(value)
- meta['SliceCount'] = int(value)
-
- elif key == 'Modality':
- meta['OCTModality'] = value
+ meta["PixelSize"] = value
+ meta["PixelSizeUnits"] = unit
+
+ elif key == "Depth focus range":
+ value, unit = parse_value_unit(value)
+ meta["DepthFocusRange"] = value
+ meta["DepthFocusRangeUnit"] = unit
+
+ elif key == "Number of focuses":
+ value, unit = parse_value_unit(value)
+ meta["FocusCount"] = int(value)
+
+ elif key == "Slice thickness":
+ value, unit = parse_value_unit(value)
+ unit = convert_unit(value, unit[:-1], "u")
+ meta["SliceThickness"] = value
+
+ elif key == "Number of slices":
+ value, unit = parse_value_unit(value)
+ meta["SliceCount"] = int(value)
+
+ elif key == "Modality":
+ meta["OCTModality"] = value
else:
continue
return meta
|
scripts/jp2_to_zarr.py#L165
Line too long (99 > 79 characters) (E501)
|
/home/runner/work/linc-convert/linc-convert/scripts/lsm_tiff_to_zarr.py#L13
tifffile
zarr
nibabel
cyclopts
"""
+
import cyclopts
import zarr
import os
import re
import ast
import numpy as np
import nibabel as nib
from tifffile import TiffFile
from glob import glob
from typing import Optional, List
+
# local modules
-from utils import \
- make_compressor, ceildiv, orientation_to_affine, center_affine
+from utils import make_compressor, ceildiv, orientation_to_affine, center_affine
app = cyclopts.App(help_format="markdown")
|
scripts/jp2_to_zarr.py#L166
Blank line contains whitespace (W293)
|
/home/runner/work/linc-convert/linc-convert/scripts/lsm_tiff_to_zarr.py#L37
def convert(
inp: str,
out: str = None,
*,
chunk: int = 128,
- compressor: str = 'blosc',
+ compressor: str = "blosc",
compressor_opt: str = "{}",
max_load: int = 512,
nii: bool = False,
- orientation: str = 'coronal',
+ orientation: str = "coronal",
center: bool = True,
thickness: Optional[float] = None,
voxel_size: List[float] = (1, 1, 1),
):
"""
|
scripts/jp2_to_zarr.py#L167
Line too long (87 > 79 characters) (E501)
|
/home/runner/work/linc-convert/linc-convert/scripts/lsm_tiff_to_zarr.py#L99
if max_load % 2:
max_load += 1
CHUNK_PATTERN = re.compile(
- r'^(?P<prefix>\w*)'
- r'_z(?P<z>[0-9]+)'
- r'_y(?P<y>[0-9]+)'
- r'(?P<suffix>\w*)$'
+ r"^(?P<prefix>\w*)" r"_z(?P<z>[0-9]+)" r"_y(?P<y>[0-9]+)" r"(?P<suffix>\w*)$"
)
- all_chunks_dirnames = list(sorted(glob(os.path.join(inp, '*_z*_y*'))))
+ all_chunks_dirnames = list(sorted(glob(os.path.join(inp, "*_z*_y*"))))
all_chunks_info = dict(
dirname=[],
prefix=[],
suffix=[],
z=[],
|
/home/runner/work/linc-convert/linc-convert/scripts/lsm_tiff_to_zarr.py#L126
)
# parse all directory names
for dirname in all_chunks_dirnames:
parsed = CHUNK_PATTERN.fullmatch(os.path.basename(dirname))
- all_chunks_info['dirname'].append(dirname)
- all_chunks_info['prefix'].append(parsed.group('prefix'))
- all_chunks_info['suffix'].append(parsed.group('suffix'))
- all_chunks_info['z'].append(int(parsed.group('z')))
- all_chunks_info['y'].append(int(parsed.group('y')))
+ all_chunks_info["dirname"].append(dirname)
+ all_chunks_info["prefix"].append(parsed.group("prefix"))
+ all_chunks_info["suffix"].append(parsed.group("suffix"))
+ all_chunks_info["z"].append(int(parsed.group("z")))
+ all_chunks_info["y"].append(int(parsed.group("y")))
# default output name
if not out:
- out = all_chunks_info['prefix'][0] + all_chunks_info['suffix'][0]
- out += '.nii.zarr' if nii else '.ome.zarr'
- nii = nii or out.endswith('.nii.zarr')
+ out = all_chunks_info["prefix"][0] + all_chunks_info["suffix"][0]
+ out += ".nii.zarr" if nii else ".ome.zarr"
+ nii = nii or out.endswith(".nii.zarr")
# parse all individual file names
- nchunkz = max(all_chunks_info['z'])
- nchunky = max(all_chunks_info['y'])
+ nchunkz = max(all_chunks_info["z"])
+ nchunky = max(all_chunks_info["y"])
allshapes = [[(0, 0, 0) for _ in range(nchunky)] for _ in range(nchunkz)]
nchannels = 0
dtype = None
for zchunk in range(nchunkz):
for ychunk in range(nchunky):
- for i in range(len(all_chunks_info['dirname'])):
- if all_chunks_info['z'][i] == zchunk + 1 \
- and all_chunks_info['y'][i] == ychunk + 1:
+ for i in range(len(all_chunks_info["dirname"])):
+ if (
+ all_chunks_info["z"][i] == zchunk + 1
+ and all_chunks_info["y"][i] == ychunk + 1
+ ):
break
- dirname = all_chunks_info['dirname'][i]
- planes_filenames \
- = list(sorted(glob(os.path.join(dirname, '*.tiff'))))
+ dirname = all_chunks_info["dirname"][i]
+ planes_filenames = list(sorted(glob(os.path.join(dirname, "*.tiff"))))
PLANE_PATTERN = re.compile(
- os.path.basename(dirname) +
- r'_plane(?P<z>[0-9]+)'
- r'_c(?P<c>[0-9]+)'
- r'.tiff$'
+ os.path.basename(dirname) + r"_plane(?P<z>[0-9]+)"
+ r"_c(?P<c>[0-9]+)"
+ r".tiff$"
)
for fname in planes_filenames:
parsed = PLANE_PATTERN.fullmatch(os.path.basename(fname))
- all_chunks_info['planes'][i]['fname'].append(fname)
- all_chunks_info['planes'][i]['z'].append(int(parsed.group('z')))
- all_chunks_info['planes'][i]['c'].append(int(parsed.group('c')))
+ all_chunks_info["planes"][i]["fname"].append(fname)
+ all_chunks_info["planes"][i]["z"].append(int(parsed.group("z")))
+ all_chunks_info["planes"][i]["c"].append(int(parsed.group("c")))
f = TiffFile(fname)
dtype = f.pages[0].dtype
yx_shape = f.pages[0].shape
- all_chunks_info['planes'][i]['yx_shape'].append(yx_shape)
-
- nplanes = max(all_chunks_info['planes'][i]['z'])
- nchannels = max(nchannels, max(all_chunks_info['planes'][i]['c']))
-
- yx_shape = set(all_chunks_info['planes'][i]['yx_shape'])
+ all_chunks_info["planes"][i]["yx_shape"].append(yx_shape)
+
+ nplanes = max(all_chunks_info["planes"][i]["z"])
+ nchannels = max(nchannels, max(all_chunks_info["planes"][i]["c"]))
+
+ yx_shape = set(all_chunks_info["planes"][i]["yx_shape"])
if not len(yx_shape) == 1:
- raise ValueError('Incompatible chunk shapes')
+ raise ValueError("Incompatible chunk shapes")
yx_shape = list(yx_shape)[0]
allshapes[zchunk][ychunk] = (nplanes, *yx_shape)
# check that all chink shapes are compatible
for zchunk in range(nchunkz):
if len(set(shape[1] for shape in allshapes[zchunk])) != 1:
- raise ValueError('Incompatible Y shapes')
+ raise ValueError("Incompatible Y shapes")
for ychunk in range(nchunky):
if len(set(shape[ychunk][0] for shape in allshapes)) != 1:
- raise ValueError('Incompatible Z shapes')
+ raise ValueError("Incompatible Z shapes")
if len(set(shape[2] for subshapes in allshapes for shape in subshapes)) != 1:
- raise ValueError('Incompatible X shapes')
+ raise ValueError("Incompatible X shapes")
# compute full shape
fullshape = [0, 0, 0]
fullshape[0] = sum(shape[0][0] for shape in allshapes)
fullshape[1] = sum(shape[1] for shape in allshapes[0])
|
/home/runner/work/linc-convert/linc-convert/scripts/lsm_tiff_to_zarr.py#L203
omz = zarr.storage.DirectoryStore(out)
omz = zarr.group(store=omz, overwrite=True)
# Prepare chunking options
opt = {
- 'chunks': [nchannels] + [chunk] * 3,
- 'dimension_separator': r'/',
- 'order': 'F',
- 'dtype': np.dtype(dtype).str,
- 'fill_value': None,
- 'compressor': make_compressor(compressor, **compressor_opt),
+ "chunks": [nchannels] + [chunk] * 3,
+ "dimension_separator": r"/",
+ "order": "F",
+ "dtype": np.dtype(dtype).str,
+ "fill_value": None,
+ "compressor": make_compressor(compressor, **compressor_opt),
}
# write first level
- omz.create_dataset('0', shape=[nchannels, *fullshape], **opt)
- array = omz['0']
- print('Write level 0 with shape', [nchannels, *fullshape])
- for i, dirname in enumerate(all_chunks_info['dirname']):
- chunkz = all_chunks_info['z'][i] - 1
- chunky = all_chunks_info['y'][i] - 1
- planes = all_chunks_info['planes'][i]
- for j, fname in enumerate(planes['fname']):
- subz = planes['z'][j] - 1
- subc = planes['c'][j] - 1
- yx_shape = planes['yx_shape'][j]
+ omz.create_dataset("0", shape=[nchannels, *fullshape], **opt)
+ array = omz["0"]
+ print("Write level 0 with shape", [nchannels, *fullshape])
+ for i, dirname in enumerate(all_chunks_info["dirname"]):
+ chunkz = all_chunks_info["z"][i] - 1
+ chunky = all_chunks_info["y"][i] - 1
+ planes = all_chunks_info["planes"][i]
+ for j, fname in enumerate(planes["fname"]):
+ subz = planes["z"][j] - 1
+ subc = planes["c"][j] - 1
+ yx_shape = planes["yx_shape"][j]
zstart = sum(shape[0][0] for shape in allshapes[:chunkz])
- ystart = sum(shape[1] for subshapes in allshapes for shape in subshapes[:chunky])
- print(f'Write plane ({subc}, {zstart + subz}, {ystart}:{ystart + yx_shape[0]})', end='\r')
+ ystart = sum(
+ shape[1] for subshapes in allshapes for shape in subshapes[:chunky]
+ )
+ print(
+ f"Write plane ({subc}, {zstart + subz}, {ystart}:{ystart + yx_shape[0]})",
+ end="\r",
+ )
slicer = (
subc,
zstart + subz,
slice(ystart, ystart + yx_shape[0]),
slice(None),
)
f = TiffFile(fname)
array[slicer] = f.asarray()
- print('')
+ print("")
# build pyramid using median windows
level = 0
while any(x > 1 for x in omz[str(level)].shape[-3:]):
prev_array = omz[str(level)]
prev_shape = prev_array.shape[-3:]
level += 1
- new_shape = list(map(lambda x: max(1, x//2), prev_shape))
+ new_shape = list(map(lambda x: max(1, x // 2), prev_shape))
if all(x < chunk for x in new_shape):
break
- print('Compute level', level, 'with shape', new_shape)
+ print("Compute level", level, "with shape", new_shape)
omz.create_dataset(str(level), shape=[nchannels, *new_shape], **opt)
new_array = omz[str(level)]
nz, ny, nx = prev_array.shape[-3:]
ncz = ceildiv(nz, max_load)
|
/home/runner/work/linc-convert/linc-convert/scripts/lsm_tiff_to_zarr.py#L261
for cz in range(ncz):
for cy in range(ncy):
for cx in range(ncx):
- print(f'chunk ({cz}, {cy}, {cx}) / ({ncz}, {ncy}, {ncx})',
- end='\r')
+ print(f"chunk ({cz}, {cy}, {cx}) / ({ncz}, {ncy}, {ncx})", end="\r")
dat = prev_array[
...,
- cz*max_load:(cz+1)*max_load,
- cy*max_load:(cy+1)*max_load,
- cx*max_load:(cx+1)*max_load,
+ cz * max_load : (cz + 1) * max_load,
+ cy * max_load : (cy + 1) * max_load,
+ cx * max_load : (cx + 1) * max_load,
]
crop = [0 if x == 1 else x % 2 for x in dat.shape[-3:]]
slicer = [slice(-1) if x else slice(None) for x in crop]
dat = dat[(Ellipsis, *slicer)]
pz, py, px = dat.shape[-3:]
- dat = dat.reshape([
- nchannels,
- max(pz//2, 1), min(pz, 2),
- max(py//2, 1), min(py, 2),
- max(px//2, 1), min(px, 2),
- ])
+ dat = dat.reshape(
+ [
+ nchannels,
+ max(pz // 2, 1),
+ min(pz, 2),
+ max(py // 2, 1),
+ min(py, 2),
+ max(px // 2, 1),
+ min(px, 2),
+ ]
+ )
dat = dat.transpose([0, 1, 3, 5, 2, 4, 6])
- dat = dat.reshape([
- nchannels,
- max(pz//2, 1),
- max(py//2, 1),
- max(px//2, 1),
- -1,
- ])
+ dat = dat.reshape(
+ [
+ nchannels,
+ max(pz // 2, 1),
+ max(py // 2, 1),
+ max(px // 2, 1),
+ -1,
+ ]
+ )
dat = np.median(dat, -1)
new_array[
...,
- cz*max_load//2:(cz+1)*max_load//2,
- cy*max_load//2:(cy+1)*max_load//2,
- cx*max_load//2:(cx+1)*max_load//2,
+ cz * max_load // 2 : (cz + 1) * max_load // 2,
+ cy * max_load // 2 : (cy + 1) * max_load // 2,
+ cx * max_load // 2 : (cx + 1) * max_load // 2,
] = dat
- print('')
+ print("")
nblevel = level
# Write OME-Zarr multiscale metadata
- print('Write metadata')
- multiscales = [{
- 'version': '0.4',
- 'axes': [
- {"name": "z", "type": "space", "unit": "micrometer"},
- {"name": "y", "type": "space", "unit": "micrometer"},
- {"name": "x", "type": "space", "unit": "micrometer"}
- ],
- 'datasets': [],
- 'type': 'median window 2x2x2',
- 'name': '',
- }]
- multiscales[0]['axes'].insert(0, {"name": "c", "type": "channel"})
+ print("Write metadata")
+ multiscales = [
+ {
+ "version": "0.4",
+ "axes": [
+ {"name": "z", "type": "space", "unit": "micrometer"},
+ {"name": "y", "type": "space", "unit": "micrometer"},
+ {"name": "x", "type": "space", "unit": "micrometer"},
+ ],
+ "datasets": [],
+ "type": "median window 2x2x2",
+ "name": "",
+ }
+ ]
+ multiscales[0]["axes"].insert(0, {"name": "c", "type": "channel"})
voxel_size = list(map(float, reversed(voxel_size)))
factor = [1] * 3
for n in range(nblevel):
shape = omz[str(n)].shape[-3:]
- multiscales[0]['datasets'].append({})
- level = multiscales[0]['datasets'][-1]
+ multiscales[0]["datasets"].append({})
+ level = multiscales[0]["datasets"][-1]
level["path"] = str(n)
# We made sure that the downsampling level is exactly 2
# However, once a dimension has size 1, we stop downsampling.
if n > 0:
- shape_prev = omz[str(n-1)].shape[-3:]
+ shape_prev = omz[str(n - 1)].shape[-3:]
if shape_prev[0] != shape[0]:
factor[0] *= 2
if shape_prev[1] != shape[1]:
factor[1] *= 2
if shape_prev[2] != shape[2]:
factor[2] *= 2
level["coordinateTransformations"] = [
{
"type": "scale",
- "scale": [1.0] + [
+ "scale": [1.0]
+ + [
factor[0] * voxel_size[0],
factor[1] * voxel_size[1],
factor[2] * voxel_size[2],
- ]
+ ],
},
{
"type": "translation",
- "translation": [0.0] + [
+ "translation": [0.0]
+ + [
(factor[0] - 1) * voxel_size[0] * 0.5,
(factor[1] - 1) * voxel_size[1] * 0.5,
(factor[2] - 1) * voxel_size[2] * 0.5,
- ]
- }
+ ],
+ },
]
multiscales[0]["coordinateTransformations"] = [
- {
- "scale": [1.0] * 4,
- "type": "scale"
- }
+ {"scale": [1.0] * 4, "type": "scale"}
]
omz.attrs["multiscales"] = multiscales
if not nii:
- print('done.')
+ print("done.")
return
# Write NIfTI-Zarr header
# NOTE: we use nifti2 because dimensions typically do not fit in a short
# TODO: we do not write the json zattrs, but it should be added in
# once the nifti-zarr package is released
- shape = list(reversed(omz['0'].shape))
- shape = shape[:3] + [1] + shape[3:] # insert time dimension
+ shape = list(reversed(omz["0"].shape))
+ shape = shape[:3] + [1] + shape[3:] # insert time dimension
affine = orientation_to_affine(orientation, *voxel_size)
if center:
affine = center_affine(affine, shape[:3])
header = nib.Nifti2Header()
header.set_data_shape(shape)
- header.set_data_dtype(omz['0'].dtype)
+ header.set_data_dtype(omz["0"].dtype)
header.set_qform(affine)
header.set_sform(affine)
- header.set_xyzt_units(nib.nifti1.unit_codes.code['micron'])
- header.structarr['magic'] = b'nz2\0'
- header = np.frombuffer(header.structarr.tobytes(), dtype='u1')
+ header.set_xyzt_units(nib.nifti1.unit_codes.code["micron"])
+ header.structarr["magic"] = b"nz2\0"
+ header = np.frombuffer(header.structarr.tobytes(), dtype="u1")
opt = {
- 'chunks': [len(header)],
- 'dimension_separator': r'/',
- 'order': 'F',
- 'dtype': '|u1',
- 'fill_value': None,
- 'compressor': None,
+ "chunks": [len(header)],
+ "dimension_separator": r"/",
+ "order": "F",
+ "dtype": "|u1",
+ "fill_value": None,
+ "compressor": None,
}
- omz.create_dataset('nifti', data=header, shape=shape, **opt)
- print('done.')
+ omz.create_dataset("nifti", data=header, shape=shape, **opt)
+ print("done.")
if __name__ == "__main__":
app()
|
scripts/jp2_to_zarr.py#L168
Line too long (97 > 79 characters) (E501)
|
/home/runner/work/linc-convert/linc-convert/scripts/jp2_to_zarr.py#L11
glymur
zarr
nibabel
cyclopts
"""
+
import cyclopts
import glymur
import zarr
import ast
import numcodecs
|
scripts/jp2_to_zarr.py#L168
Unexpected spaces around keyword / parameter equals (E251)
|
/home/runner/work/linc-convert/linc-convert/scripts/jp2_to_zarr.py#L25
import numpy as np
from glob import glob
import nibabel as nib
from typing import Optional
-HOME = '/space/aspasia/2/users/linc/000003'
+HOME = "/space/aspasia/2/users/linc/000003"
# Path to LincBrain dataset
-LINCSET = os.path.join(HOME, 'sourcedata')
-LINCOUT = os.path.join(HOME, 'rawdata')
+LINCSET = os.path.join(HOME, "sourcedata")
+LINCOUT = os.path.join(HOME, "rawdata")
app = cyclopts.App(help_format="markdown")
@app.default
def convert(
inp: str = None,
out: str = None,
subjects: list = [],
*,
chunk: int = 4096,
- compressor: str = 'blosc',
+ compressor: str = "blosc",
compressor_opt: str = "{}",
max_load: int = 16384,
nii: bool = False,
- orientation: str = 'coronal',
+ orientation: str = "coronal",
center: bool = True,
thickness: Optional[float] = None,
):
"""
This command converts JPEG2000 files generated by MBF-Neurolucida
|
scripts/jp2_to_zarr.py#L168
Unexpected spaces around keyword / parameter equals (E251)
|
scripts/jp2_to_zarr.py#L169
Whitespace before ':' (E203)
|
/home/runner/work/linc-convert/linc-convert/scripts/jp2_to_zarr.py#L96
Set RAS[0, 0, 0] at FOV center
thickness
Slice thickness
"""
for LINCSUB in subjects:
- print('working on subject', LINCSUB)
- HISTO_FOLDER = os.path.join(LINCSET, f'sub-{LINCSUB}/micr')
- OUT_FOLDER = os.path.join(LINCOUT, f'sub-{LINCSUB}/micr')
+ print("working on subject", LINCSUB)
+ HISTO_FOLDER = os.path.join(LINCSET, f"sub-{LINCSUB}/micr")
+ OUT_FOLDER = os.path.join(LINCOUT, f"sub-{LINCSUB}/micr")
os.makedirs(OUT_FOLDER, exist_ok=True)
- inp_dir = list(sorted(glob(os.path.join(HISTO_FOLDER, f'*nDF.jp2'))))
-
- start_num, end_num = 0, len(inp_dir)-1
- out = os.path.join(OUT_FOLDER, f'sub-{LINCSUB}_sample-slice{start_num:04d}slice{end_num:04d}_stain-LY_DF')
- out += '.nii.zarr' if nii else '.ome.zarr'
- nii = nii or out.endswith('.nii.zarr')
+ inp_dir = list(sorted(glob(os.path.join(HISTO_FOLDER, f"*nDF.jp2"))))
+
+ start_num, end_num = 0, len(inp_dir) - 1
+ out = os.path.join(
+ OUT_FOLDER,
+ f"sub-{LINCSUB}_sample-slice{start_num:04d}slice{end_num:04d}_stain-LY_DF",
+ )
+ out += ".nii.zarr" if nii else ".ome.zarr"
+ nii = nii or out.endswith(".nii.zarr")
print(out)
if isinstance(compressor_opt, str):
compressor_opt = ast.literal_eval(compressor_opt)
# Prepare Zarr group
omz = zarr.storage.DirectoryStore(out)
omz = zarr.group(store=omz, overwrite=True)
- nblevel, has_channel, dtype_jp2 = float('inf'), float('inf'), ''
+ nblevel, has_channel, dtype_jp2 = float("inf"), float("inf"), ""
# get new_size
new_height, new_width = 0, 0
for inp in inp_dir:
jp2 = glymur.Jp2k(inp)
nblevel = min(nblevel, jp2.codestream.segment[2].num_res)
has_channel = min(has_channel, jp2.ndim - 2)
dtype_jp2 = np.dtype(jp2.dtype).str
if jp2.shape[0] > new_height:
new_height = jp2.shape[0]
- if jp2.shape[1] > new_width:
+ if jp2.shape[1] > new_width:
new_width = jp2.shape[1]
- new_size = (new_height, new_width, 3) if has_channel else (new_height, new_width)
+ new_size = (
+ (new_height, new_width, 3) if has_channel else (new_height, new_width)
+ )
print(len(inp_dir), new_size, nblevel, has_channel)
-
# Prepare chunking options
opt = {
- 'chunks': list(new_size[2:]) + [1] + [chunk, chunk],
- 'dimension_separator': r'/',
- 'order': 'F',
- 'dtype': dtype_jp2,
- 'fill_value': None,
- 'compressor': make_compressor(compressor, **compressor_opt),
+ "chunks": list(new_size[2:]) + [1] + [chunk, chunk],
+ "dimension_separator": r"/",
+ "order": "F",
+ "dtype": dtype_jp2,
+ "fill_value": None,
+ "compressor": make_compressor(compressor, **compressor_opt),
}
print(opt)
-
# Write each level
for level in range(nblevel):
shape = [ceildiv(s, 2**level) for s in new_size[:2]]
- shape = [new_size[2]] + [len(inp_dir)] + [s for s in shape]
-
- omz.create_dataset(f'{level}', shape=shape, **opt)
- array = omz[f'{level}']
+ shape = [new_size[2]] + [len(inp_dir)] + [s for s in shape]
+
+ omz.create_dataset(f"{level}", shape=shape, **opt)
+ array = omz[f"{level}"]
# Write each slice
- for idx, inp in enumerate(inp_dir):
+ for idx, inp in enumerate(inp_dir):
j2k = glymur.Jp2k(inp)
vxw, vxh = get_pixelsize(j2k)
subdat = WrappedJ2K(j2k, level=level)
subdat_size = subdat.shape
- print('Convert level', level, 'with shape', shape, 'for slice', idx, 'with size', subdat_size)
+ print(
+ "Convert level",
+ level,
+ "with shape",
+ shape,
+ "for slice",
+ idx,
+ "with size",
+ subdat_size,
+ )
# offset while attaching
- x, y = (int((shape[-2] - subdat_size[-2])/2), int((shape[-1] - subdat_size[-1])/2))
-
+ x, y = (
+ int((shape[-2] - subdat_size[-2]) / 2),
+ int((shape[-1] - subdat_size[-1]) / 2),
+ )
+
if max_load is None or (shape[-2] < max_load and shape[-1] < max_load):
- array[..., idx, :, :] = np.zeros((3, shape[-2], shape[-1]), dtype = np.uint8)
- array[..., idx, x : x + subdat_size[1], y : y + subdat_size[2]] = subdat[...]
+ array[..., idx, :, :] = np.zeros(
+ (3, shape[-2], shape[-1]), dtype=np.uint8
+ )
+ array[..., idx, x : x + subdat_size[1], y : y + subdat_size[2]] = (
+ subdat[...]
+ )
else:
ni = ceildiv(shape[-2], max_load)
nj = ceildiv(shape[-1], max_load)
-
+
for i in range(ni):
for j in range(nj):
- print(f'\r{i+1}/{ni}, {j+1}/{nj}', end=' ')
- start_x, end_x = i*max_load, min((i+1)*max_load, shape[-2])
- start_y, end_y = j*max_load, min((j+1)*max_load, shape[-1])
- array[..., idx, start_x:end_x, start_y:end_y] = np.zeros((3, end_x-start_x, end_y-start_y), dtype = np.uint8)
+ print(f"\r{i+1}/{ni}, {j+1}/{nj}", end=" ")
+ start_x, end_x = i * max_load, min(
+ (i + 1) * max_load, shape[-2]
+ )
+ start_y, end_y = j * max_load, min(
+ (j + 1) * max_load, shape[-1]
+ )
+ array[..., idx, start_x:end_x, start_y:end_y] = np.zeros(
+ (3, end_x - start_x, end_y - start_y), dtype=np.uint8
+ )
if end_x <= x or end_y <= y:
- continue
+ continue
if start_x >= subdat_size[-2] or start_y >= subdat_size[-1]:
- continue
+ continue
array[
...,
- idx,
- x + start_x: x + min(end_x, subdat_size[-2]),
- y + start_y: y + min(end_y, subdat_size[-1]),
- ] = subdat[
+ idx,
+ x + start_x : x + min(end_x, subdat_size[-2]),
+ y + start_y : y + min(end_y, subdat_size[-1]),
+ ] = subdat[
...,
- start_x: min((i+1)*max_load, subdat_size[-2]),
- start_y: min((j+1)*max_load, subdat_size[-1]),
+ start_x : min((i + 1) * max_load, subdat_size[-2]),
+ start_y : min((j + 1) * max_load, subdat_size[-1]),
]
- print('')
-
+ print("")
+
# Write OME-Zarr multiscale metadata
- print('Write metadata')
- multiscales = [{
- 'version': '0.4',
- 'axes': [
- {"name": "z", "type": "space", "unit": "micrometer"},
- {"name": "y", "type": "distance", "unit": "micrometer"},
- {"name": "x", "type": "space", "unit": "micrometer"}
- ],
- 'datasets': [],
- 'type': 'jpeg2000',
- 'name': '',
- }]
+ print("Write metadata")
+ multiscales = [
+ {
+ "version": "0.4",
+ "axes": [
+ {"name": "z", "type": "space", "unit": "micrometer"},
+ {"name": "y", "type": "distance", "unit": "micrometer"},
+ {"name": "x", "type": "space", "unit": "micrometer"},
+ ],
+ "datasets": [],
+ "type": "jpeg2000",
+ "name": "",
+ }
+ ]
if has_channel:
- multiscales[0]['axes'].insert(0, {"name": "c", "type": "channel"})
+ multiscales[0]["axes"].insert(0, {"name": "c", "type": "channel"})
for n in range(nblevel):
- shape0 = omz['0'].shape[-2:]
+ shape0 = omz["0"].shape[-2:]
shape = omz[str(n)].shape[-2:]
- multiscales[0]['datasets'].append({})
- level = multiscales[0]['datasets'][-1]
+ multiscales[0]["datasets"].append({})
+ level = multiscales[0]["datasets"][-1]
level["path"] = str(n)
# I assume that wavelet transforms end up aligning voxel edges
# across levels, so the effective scaling is the shape ratio,
# and there is a half voxel shift wrt to the "center of first voxel"
# frame
level["coordinateTransformations"] = [
{
"type": "scale",
- "scale": [1.0] * has_channel + [
- 1.0,
- (shape0[0]/shape[0])*vxh,
- (shape0[1]/shape[1])*vxw,
- ]
+ "scale": [1.0] * has_channel
+ + [
+ 1.0,
+ (shape0[0] / shape[0]) * vxh,
+ (shape0[1] / shape[1]) * vxw,
+ ],
},
{
"type": "translation",
- "translation": [0.0] * has_channel + [
- 0.0,
- (shape0[0]/shape[0] - 1)*vxh*0.5,
- (shape0[1]/shape[1] - 1)*vxw*0.5,
- ]
- }
+ "translation": [0.0] * has_channel
+ + [
+ 0.0,
+ (shape0[0] / shape[0] - 1) * vxh * 0.5,
+ (shape0[1] / shape[1] - 1) * vxw * 0.5,
+ ],
+ },
]
multiscales[0]["coordinateTransformations"] = [
- {
- "scale": [1.0] * (3 + has_channel),
- "type": "scale"
- }
+ {"scale": [1.0] * (3 + has_channel), "type": "scale"}
]
omz.attrs["multiscales"] = multiscales
-
- # Write sidecar .json file
- json_name = os.path.join(OUT_FOLDER, f'sub-{LINCSUB}_sample-slice{start_num:04d}slice{end_num:04d}_stain-LY_DF.json')
+ # Write sidecar .json file
+ json_name = os.path.join(
+ OUT_FOLDER,
+ f"sub-{LINCSUB}_sample-slice{start_num:04d}slice{end_num:04d}_stain-LY_DF.json",
+ )
dic = {}
- dic['PixelSize'] = json.dumps([vxw, vxh])
- dic['PixelSizeUnits'] = 'um'
- dic['SliceThickness'] = 1.2
- dic['SliceThicknessUnits'] = 'mm'
- dic['SampleStaining'] = 'LY'
+ dic["PixelSize"] = json.dumps([vxw, vxh])
+ dic["PixelSizeUnits"] = "um"
+ dic["SliceThickness"] = 1.2
+ dic["SliceThicknessUnits"] = "mm"
+ dic["SampleStaining"] = "LY"
with open(json_name, "w") as outfile:
- json.dump(dic, outfile)
- outfile.write('\n')
-
+ json.dump(dic, outfile)
+ outfile.write("\n")
def orientation_ensure_3d(orientation):
- orientation = {
- 'coronal': 'LI',
- 'axial': 'LP',
- 'sagittal': 'PI',
- }.get(orientation.lower(), orientation).upper()
+ orientation = (
+ {
+ "coronal": "LI",
+ "axial": "LP",
+ "sagittal": "PI",
+ }
+ .get(orientation.lower(), orientation)
+ .upper()
+ )
if len(orientation) == 2:
- if 'L' not in orientation and 'R' not in orientation:
- orientation += 'R'
- if 'P' not in orientation and 'A' not in orientation:
- orientation += 'A'
- if 'I' not in orientation and 'S' not in orientation:
- orientation += 'S'
+ if "L" not in orientation and "R" not in orientation:
+ orientation += "R"
+ if "P" not in orientation and "A" not in orientation:
+ orientation += "A"
+ if "I" not in orientation and "S" not in orientation:
+ orientation += "S"
return orientation
def orientation_to_affine(orientation, vxw=1, vxh=1, vxd=1):
orientation = orientation_ensure_3d(orientation)
affine = np.zeros([4, 4])
vx = np.asarray([vxw, vxh, vxd])
for i in range(3):
letter = orientation[i]
- sign = -1 if letter in 'LPI' else 1
- letter = {'L': 'R', 'P': 'A', 'I': 'S'}.get(letter, letter)
- index = list('RAS').index(letter)
+ sign = -1 if letter in "LPI" else 1
+ letter = {"L": "R", "P": "A", "I": "S"}.get(letter, letter)
+ index = list("RAS").index(letter)
affine[index, i] = sign * vx[i]
return affine
def center_affine(affine, shape):
|
scripts/jp2_to_zarr.py#L169
Whitespace before ':' (E203)
|
/home/runner/work/linc-convert/linc-convert/scripts/jp2_to_zarr.py#L352
if not isinstance(index, tuple):
index = (index,)
if Ellipsis not in index:
index += (Ellipsis,)
if any(idx is None for idx in index):
- raise TypeError('newaxis not supported')
+ raise TypeError("newaxis not supported")
# substitute ellipses
new_index = []
has_seen_ellipsis = False
last_was_ellipsis = False
|
scripts/jp2_to_zarr.py#L169
Line too long (98 > 79 characters) (E501)
|
/home/runner/work/linc-convert/linc-convert/scripts/jp2_to_zarr.py#L364
for idx in index:
if idx is Ellipsis:
if not has_seen_ellipsis:
new_index += [slice(None)] * nb_ellipsis
elif not last_was_ellipsis:
- raise ValueError('Multiple ellipses should be contiguous')
+ raise ValueError("Multiple ellipses should be contiguous")
has_seen_ellipsis = True
last_was_ellipsis = True
elif not isinstance(idx, slice):
- raise TypeError('Only slices are supported')
+ raise TypeError("Only slices are supported")
elif idx.step not in (None, 1):
- raise ValueError('Striding not supported')
+ raise ValueError("Striding not supported")
else:
last_was_ellipsis = False
new_index += [idx]
index = new_index
|
scripts/jp2_to_zarr.py#L174
Blank line contains whitespace (W293)
|
/home/runner/work/linc-convert/linc-convert/scripts/jp2_to_zarr.py#L404
def make_compressor(name, **prm):
if not isinstance(name, str):
return name
name = name.lower()
- if name == 'blosc':
+ if name == "blosc":
Compressor = numcodecs.Blosc
- elif name == 'zlib':
+ elif name == "zlib":
Compressor = numcodecs.Zlib
else:
- raise ValueError('Unknown compressor', name)
+ raise ValueError("Unknown compressor", name)
return Compressor(**prm)
def get_pixelsize(j2k):
# Adobe XMP metadata
# https://en.wikipedia.org/wiki/Extensible_Metadata_Platform
- XMP_UUID = 'BE7ACFCB97A942E89C71999491E3AFAC'
- TAG_Images = '{http://ns.adobe.com/xap/1.0/}Images'
- Tag_Desc = '{http://www.w3.org/1999/02/22-rdf-syntax-ns#}Description'
- Tag_PixelWidth = '{http://ns.adobe.com/xap/1.0/}PixelWidth'
- Tag_PixelHeight = '{http://ns.adobe.com/xap/1.0/}PixelHeight'
+ XMP_UUID = "BE7ACFCB97A942E89C71999491E3AFAC"
+ TAG_Images = "{http://ns.adobe.com/xap/1.0/}Images"
+ Tag_Desc = "{http://www.w3.org/1999/02/22-rdf-syntax-ns#}Description"
+ Tag_PixelWidth = "{http://ns.adobe.com/xap/1.0/}PixelWidth"
+ Tag_PixelHeight = "{http://ns.adobe.com/xap/1.0/}PixelHeight"
vxw = vxh = 1.0
for box in j2k.box:
- if getattr(box, 'uuid', None) == uuid.UUID(XMP_UUID):
+ if getattr(box, "uuid", None) == uuid.UUID(XMP_UUID):
try:
images = list(box.data.iter(TAG_Images))[0]
desc = list(images.iter(Tag_Desc))[0]
vxw = float(desc.attrib[Tag_PixelWidth])
vxh = float(desc.attrib[Tag_PixelHeight])
|
scripts/jp2_to_zarr.py#L178
Line too long (87 > 79 characters) (E501)
|
/home/runner/work/linc-convert/linc-convert/scripts/jp2_to_zarr.py#L437
return vxw, vxh
if __name__ == "__main__":
app()
-
|
scripts/jp2_to_zarr.py#L179
Line too long (87 > 79 characters) (E501)
|
scripts/jp2_to_zarr.py#L180
Line too long (137 > 79 characters) (E501)
|
scripts/jp2_to_zarr.py#L180
Unexpected spaces around keyword / parameter equals (E251)
|
scripts/jp2_to_zarr.py#L180
Unexpected spaces around keyword / parameter equals (E251)
|
scripts/jp2_to_zarr.py#L180
Trailing whitespace (W291)
|
scripts/jp2_to_zarr.py#L182
Trailing whitespace (W291)
|
scripts/jp2_to_zarr.py#L184
Line too long (88 > 79 characters) (E501)
|
scripts/jp2_to_zarr.py#L185
Trailing whitespace (W291)
|
scripts/jp2_to_zarr.py#L189
Trailing whitespace (W291)
|
scripts/jp2_to_zarr.py#L198
Blank line contains whitespace (W293)
|
scripts/jp2_to_zarr.py#L224
Line too long (80 > 79 characters) (E501)
|
scripts/jp2_to_zarr.py#L230
Trailing whitespace (W291)
|
scripts/jp2_to_zarr.py#L238
Trailing whitespace (W291)
|
scripts/jp2_to_zarr.py#L252
Blank line contains whitespace (W293)
|
scripts/jp2_to_zarr.py#L253
Too many blank lines (2) (E303)
|
scripts/jp2_to_zarr.py#L253
Trailing whitespace (W291)
|
scripts/jp2_to_zarr.py#L254
Line too long (125 > 79 characters) (E501)
|
scripts/jp2_to_zarr.py#L258
Trailing whitespace (W291)
|
scripts/jp2_to_zarr.py#L263
Trailing whitespace (W291)
|
scripts/jp2_to_zarr.py#L264
Trailing whitespace (W291)
|
scripts/jp2_to_zarr.py#L268
Too many blank lines (3) (E303)
|
scripts/jp2_to_zarr.py#L442
Blank line at end of file (W391)
|
scripts/lsm_tiff_to_zarr.py#L169
Line too long (80 > 79 characters) (E501)
|
scripts/lsm_tiff_to_zarr.py#L170
Line too long (80 > 79 characters) (E501)
|
scripts/lsm_tiff_to_zarr.py#L193
Line too long (81 > 79 characters) (E501)
|
scripts/lsm_tiff_to_zarr.py#L230
Line too long (93 > 79 characters) (E501)
|
scripts/lsm_tiff_to_zarr.py#L231
Line too long (102 > 79 characters) (E501)
|
scripts/oct_mat_to_zarr.py#L131
Line too long (80 > 79 characters) (E501)
|
Run linters
The following actions uses node12 which is deprecated and will be forced to run on node16: actions/setup-python@v1. For more info: https://github.blog/changelog/2023-06-13-github-actions-all-actions-will-run-on-node16-instead-of-node12-by-default/
|
Run linters
The following actions use a deprecated Node.js version and will be forced to run on node20: actions/setup-python@v1, wearerequired/lint-action@v2. For more info: https://github.blog/changelog/2024-03-07-github-actions-all-actions-will-run-on-node20-instead-of-node16-by-default/
|