Multimodal Agentic Workflow - Phidata
A Streamlit application that analyzes product ingredients using Gemini AI to provide insights about food and personal care products.
- Example Products: Pre-loaded examples of common products
- Image Upload: Upload your own product images
- Camera Capture: Take photos directly through the app
- AI Analysis: Powered by Google's Gemini 2.0 Flash and Tavily Search
- Ingredient Insights: Get a detailed analysis of ingredients and their implications
<Tutorial will be released on YouTube. Meanwhile, watch Agentic RAG using Phidata >
- Clone the repository:
git clone https://github.com/yourusername/Product-Ingredient-Agent.git
cd Product-Ingredient-Agent
- Create a virtual environment:
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
- Install dependencies:
pip install -r requirements.txt
- Create a
.env
file in the project root:
TAVILY_API_KEY = your_tavily_api_key
GOOGLE_API_KEY = your_gemini_api_key
- Add your example images in the
images/
directory:
images/
├── hide_and_seek.jpg
├── bournvita.jpg
├── lays.jpg
└── shampoo.jpg
- Run the Streamlit app:
streamlit run app.py
-
Open your browser and navigate to
http://localhost:8501
-
Choose one of three options to analyze a product:
- Select from example products
- Upload your own image
- Take a photo using your camera
product-ingredient-analyzer/
├── app.py # Main Streamlit application
├── constants.py # System prompts and constants
├── requirements.txt # Project dependencies
├── images/ # Example product images
└── README.md # Project documentation
- streamlit
- phidata
- pillow
- tavily-python
- google-generativeai
⭐️ STAR the Phidata repository: https://github.com/phidatahq/phidata
This project is licensed under the MIT License - see the LICENSE file for details.
- Phidata for building Multimodal Agent
- Google Gemini AI for powering the analysis
- Streamlit for the web interface
- Tavily for search capabilities