Skip to content
forked from runapp-aus/strayr

A catalogue of ready-to-use ABS coding structures. Package documentation can be found here: https://runapp-aus.github.io/abscorr/

Notifications You must be signed in to change notification settings

nerskin/abscorr

 
 

Repository files navigation

abscorr

Lifecycle: experimental R build status

The abscorr package provides tidy versions of common structures used by the Australian Bureau of Statistics (ABS).

This package is currently in development and subject to change. The lifecycle badge will be changed to stable when structures are stable (should be relatively soon).

Contribute to this package: people are actively encouraged to contribute to this package.

Installation

You can install the current version of abscorr with:

remotes::install_github("runapp-aus/abscorr")

Structures

Current structures stored in abscorr are:

The abscorr package also loads absmapsdata, which contains the following structures and their geometry as sf objects:

ASGS Main Structures

  • sa12011: Statistical Area 1 2011
  • sa12016: Statistical Area 1 2016
  • sa22011: Statistical Area 2 2011
  • sa22016: Statistical Area 2 2016
  • sa32011: Statistical Area 3 2011
  • sa32016: Statistical Area 3 2016
  • sa42011: Statistical Area 4 2011
  • sa42016: Statistical Area 4 2016
  • gcc2011: Greater Capital Cities 2011
  • gcc2016: Greater Capital Cities 2016
  • ra2011: Remoteness Areas 2011
  • ra2016: Remoteness Areas 2016
  • state2011: State 2011
  • state2016: State 2016

ASGS Non-ABS Structures

  • ced2018: Commonwealth Electoral Divisions 2018
  • sed2018: State Electoral Divisions 2018
  • lga2016: Local Government Areas 2016
  • lga2018: Local Government Areas 2018
  • regional_ivi2008: Regions for the Internet Vacancy Index 2008
  • postcodes2016: Postcodes 2016
  • dz2011: Census of Population and Housing Destination Zones 2011
  • dz2016: Census of Population and Housing Destination Zones 2016

Using abscorr

Loading the package will lazily load the structures listed above. Call them with their name:

library(abscorr)
#> Loading required package: absmapsdata
library(dplyr)
library(abscorr)
#> Loading required package: absmapsdata
library(dplyr, warn.conflicts = FALSE)

glimpse(anzsco)
#> Rows: 1,180
#> Columns: 11
#> $ anzsco1_code <chr> "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1…
#> $ anzsco1      <chr> "Managers", "Managers", "Managers", "Managers", "Managers…
#> $ anzsco2_code <chr> "10", "11", "11", "11", "11", "11", "11", "11", "11", "12…
#> $ anzsco2      <chr> "Managers, nfd", "Chief Executives, General Managers and …
#> $ anzsco3_code <chr> "100", "110", "111", "111", "111", "111", "111", "111", "…
#> $ anzsco3      <chr> "Managers, nfd", "Chief Executives, General Managers and …
#> $ anzsco4_code <chr> "1000", "1100", "1110", "1111", "1112", "1112", "1113", "…
#> $ anzsco4      <chr> "Managers, nfd", "Chief Executives, General Managers and …
#> $ anzsco6_code <chr> "100000", "110000", "111000", "111111", "111211", "111212…
#> $ anzsco6      <chr> "Managers, nfd", "Chief Executives, General Managers and …
#> $ skill_level  <chr> NA, NA, NA, "1", "1", "1", "1", "1", "1", NA, NA, "1", "1…
glimpse(anzsic)
#> Rows: 506
#> Columns: 8
#> $ anzsic_division_code    <chr> "A", "A", "A", "A", "A", "A", "A", "A", "A", "…
#> $ anzsic_division         <chr> "Agriculture, Forestry and Fishing", "Agricult…
#> $ anzsic_subdivision_code <chr> "1", "1", "1", "1", "1", "1", "1", "1", "1", "…
#> $ anzsic_subdivision      <chr> "Agriculture", "Agriculture", "Agriculture", "…
#> $ anzsic_group_code       <chr> "11", "11", "11", "11", "11", "12", "12", "12"…
#> $ anzsic_group            <chr> "Nursery and Floriculture Production", "Nurser…
#> $ anzsic_class_code       <chr> "111", "112", "113", "114", "115", "121", "122…
#> $ anzsic_class            <chr> "Nursery Production (Under Cover)", "Nursery P…
glimpse(asced_foe)
#> Rows: 439
#> Columns: 6
#> $ foe2_code <chr> "01", "01", "01", "01", "01", "01", "01", "01", "01", "01", …
#> $ foe2      <chr> "Natural and Physical Sciences", "Natural and Physical Scien…
#> $ foe4_code <chr> "0100", "0101", "0101", "0101", "0101", "0103", "0103", "010…
#> $ foe4      <chr> "Natural and Physical Sciences, nfd", "Mathematical Sciences…
#> $ foe6_code <chr> "010000", "010100", "010101", "010103", "010199", "010300", …
#> $ foe6      <chr> "Natural and Physical Sciences, nfd", "Mathematical Sciences…
glimpse(asced_qual)
#> Rows: 64
#> Columns: 6
#> $ qual1_code <chr> "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2",…
#> $ qual1      <chr> "Postgraduate Degree Level", "Postgraduate Degree Level", "…
#> $ qual2_code <chr> "11", "11", "11", "11", "11", "11", "12", "12", "12", "12",…
#> $ qual2      <chr> "Doctoral Degree Level", "Doctoral Degree Level", "Doctoral…
#> $ qual3_code <chr> "111", "112", "113", "114", "115", "116", "121", "122", "12…
#> $ qual3      <chr> "Higher Doctorate", "Doctorate by Research", "Doctorate by …
glimpse(sa42016)
#> Rows: 107
#> Columns: 10
#> $ sa4_code_2016   <chr> "101", "102", "103", "104", "105", "106", "107", "108"…
#> $ sa4_name_2016   <chr> "Capital Region", "Central Coast", "Central West", "Co…
#> $ gcc_code_2016   <chr> "1RNSW", "1GSYD", "1RNSW", "1RNSW", "1RNSW", "1RNSW", …
#> $ gcc_name_2016   <chr> "Rest of NSW", "Greater Sydney", "Rest of NSW", "Rest …
#> $ state_code_2016 <chr> "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1",…
#> $ state_name_2016 <chr> "New South Wales", "New South Wales", "New South Wales…
#> $ areasqkm_2016   <dbl> 51895.5631, 1681.0724, 70297.0604, 13229.7578, 339363.…
#> $ cent_long       <dbl> 149.2450, 151.2855, 148.3558, 152.7739, 145.0269, 150.…
#> $ cent_lat        <dbl> -35.56480, -33.30797, -33.21697, -29.81603, -30.98611,…
#> $ geometry        <list> [150.31133, 150.31258, 150.30964, 150.31133, -35.6658…
glimpse(ced2018)
#> Rows: 169
#> Columns: 6
#> $ ced_code_2018 <chr> "101", "102", "103", "104", "105", "106", "107", "108", …
#> $ ced_name_2018 <chr> "Banks", "Barton", "Bennelong", "Berowra", "Blaxland", "…
#> $ areasqkm_2018 <dbl> 49.4460, 39.6466, 58.6052, 749.6359, 61.1166, 98.3974, 3…
#> $ cent_long     <dbl> 151.0465, 151.1274, 151.0985, 151.0385, 151.0090, 151.15…
#> $ cent_lat      <dbl> -33.96482, -33.94082, -33.79360, -33.56993, -33.89634, -…
#> $ geometry      <list> [151.01558, 151.01209, 151.00812, 151.00593, 151.00422,…

About

A catalogue of ready-to-use ABS coding structures. Package documentation can be found here: https://runapp-aus.github.io/abscorr/

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 96.0%
  • CSS 4.0%