The abscorr
package provides tidy versions of common structures used
by the Australian Bureau of Statistics (ABS).
This package is currently in development and subject to change. The
lifecycle badge will be changed to stable
when structures are stable
(should be relatively soon).
Contribute to this package: people are actively encouraged to contribute to this package.
You can install the current version of abscorr
with:
remotes::install_github("runapp-aus/abscorr")
Current structures stored in abscorr
are:
anzsco
: occupation levels of the Australian and New Zealand Standard Classification of Occupations (ANZSCO), First Edition, Revision 1, 2009. Cat. 1220.0.anzsic
: industry levels of the Australian and New Zealand Standard Industrial Classification (ANZSIC), 2006 (Revision 1.0). Cat. 1292.0.asced_foe
: field of education levels of the Australian Standard Classification of Education (ASCED), 2001. Cat. 1272.0.asced_qual
: qualification levels of the Australian Standard Classification of Education (ASCED), 2001. Cat. 1272.0.
The abscorr
package also loads
absmapsdata
, which contains
the following structures and their geometry as sf
objects:
ASGS Main Structures
sa12011
: Statistical Area 1 2011sa12016
: Statistical Area 1 2016sa22011
: Statistical Area 2 2011sa22016
: Statistical Area 2 2016sa32011
: Statistical Area 3 2011sa32016
: Statistical Area 3 2016sa42011
: Statistical Area 4 2011sa42016
: Statistical Area 4 2016gcc2011
: Greater Capital Cities 2011gcc2016
: Greater Capital Cities 2016ra2011
: Remoteness Areas 2011ra2016
: Remoteness Areas 2016state2011
: State 2011state2016
: State 2016
ASGS Non-ABS Structures
ced2018
: Commonwealth Electoral Divisions 2018sed2018
: State Electoral Divisions 2018lga2016
: Local Government Areas 2016lga2018
: Local Government Areas 2018regional_ivi2008
: Regions for the Internet Vacancy Index 2008postcodes2016
: Postcodes 2016dz2011
: Census of Population and Housing Destination Zones 2011dz2016
: Census of Population and Housing Destination Zones 2016
Loading the package will lazily load the structures listed above. Call them with their name:
library(abscorr)
#> Loading required package: absmapsdata
library(dplyr)
library(abscorr)
#> Loading required package: absmapsdata
library(dplyr, warn.conflicts = FALSE)
glimpse(anzsco)
#> Rows: 1,180
#> Columns: 11
#> $ anzsco1_code <chr> "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1…
#> $ anzsco1 <chr> "Managers", "Managers", "Managers", "Managers", "Managers…
#> $ anzsco2_code <chr> "10", "11", "11", "11", "11", "11", "11", "11", "11", "12…
#> $ anzsco2 <chr> "Managers, nfd", "Chief Executives, General Managers and …
#> $ anzsco3_code <chr> "100", "110", "111", "111", "111", "111", "111", "111", "…
#> $ anzsco3 <chr> "Managers, nfd", "Chief Executives, General Managers and …
#> $ anzsco4_code <chr> "1000", "1100", "1110", "1111", "1112", "1112", "1113", "…
#> $ anzsco4 <chr> "Managers, nfd", "Chief Executives, General Managers and …
#> $ anzsco6_code <chr> "100000", "110000", "111000", "111111", "111211", "111212…
#> $ anzsco6 <chr> "Managers, nfd", "Chief Executives, General Managers and …
#> $ skill_level <chr> NA, NA, NA, "1", "1", "1", "1", "1", "1", NA, NA, "1", "1…
glimpse(anzsic)
#> Rows: 506
#> Columns: 8
#> $ anzsic_division_code <chr> "A", "A", "A", "A", "A", "A", "A", "A", "A", "…
#> $ anzsic_division <chr> "Agriculture, Forestry and Fishing", "Agricult…
#> $ anzsic_subdivision_code <chr> "1", "1", "1", "1", "1", "1", "1", "1", "1", "…
#> $ anzsic_subdivision <chr> "Agriculture", "Agriculture", "Agriculture", "…
#> $ anzsic_group_code <chr> "11", "11", "11", "11", "11", "12", "12", "12"…
#> $ anzsic_group <chr> "Nursery and Floriculture Production", "Nurser…
#> $ anzsic_class_code <chr> "111", "112", "113", "114", "115", "121", "122…
#> $ anzsic_class <chr> "Nursery Production (Under Cover)", "Nursery P…
glimpse(asced_foe)
#> Rows: 439
#> Columns: 6
#> $ foe2_code <chr> "01", "01", "01", "01", "01", "01", "01", "01", "01", "01", …
#> $ foe2 <chr> "Natural and Physical Sciences", "Natural and Physical Scien…
#> $ foe4_code <chr> "0100", "0101", "0101", "0101", "0101", "0103", "0103", "010…
#> $ foe4 <chr> "Natural and Physical Sciences, nfd", "Mathematical Sciences…
#> $ foe6_code <chr> "010000", "010100", "010101", "010103", "010199", "010300", …
#> $ foe6 <chr> "Natural and Physical Sciences, nfd", "Mathematical Sciences…
glimpse(asced_qual)
#> Rows: 64
#> Columns: 6
#> $ qual1_code <chr> "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2",…
#> $ qual1 <chr> "Postgraduate Degree Level", "Postgraduate Degree Level", "…
#> $ qual2_code <chr> "11", "11", "11", "11", "11", "11", "12", "12", "12", "12",…
#> $ qual2 <chr> "Doctoral Degree Level", "Doctoral Degree Level", "Doctoral…
#> $ qual3_code <chr> "111", "112", "113", "114", "115", "116", "121", "122", "12…
#> $ qual3 <chr> "Higher Doctorate", "Doctorate by Research", "Doctorate by …
glimpse(sa42016)
#> Rows: 107
#> Columns: 10
#> $ sa4_code_2016 <chr> "101", "102", "103", "104", "105", "106", "107", "108"…
#> $ sa4_name_2016 <chr> "Capital Region", "Central Coast", "Central West", "Co…
#> $ gcc_code_2016 <chr> "1RNSW", "1GSYD", "1RNSW", "1RNSW", "1RNSW", "1RNSW", …
#> $ gcc_name_2016 <chr> "Rest of NSW", "Greater Sydney", "Rest of NSW", "Rest …
#> $ state_code_2016 <chr> "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1",…
#> $ state_name_2016 <chr> "New South Wales", "New South Wales", "New South Wales…
#> $ areasqkm_2016 <dbl> 51895.5631, 1681.0724, 70297.0604, 13229.7578, 339363.…
#> $ cent_long <dbl> 149.2450, 151.2855, 148.3558, 152.7739, 145.0269, 150.…
#> $ cent_lat <dbl> -35.56480, -33.30797, -33.21697, -29.81603, -30.98611,…
#> $ geometry <list> [150.31133, 150.31258, 150.30964, 150.31133, -35.6658…
glimpse(ced2018)
#> Rows: 169
#> Columns: 6
#> $ ced_code_2018 <chr> "101", "102", "103", "104", "105", "106", "107", "108", …
#> $ ced_name_2018 <chr> "Banks", "Barton", "Bennelong", "Berowra", "Blaxland", "…
#> $ areasqkm_2018 <dbl> 49.4460, 39.6466, 58.6052, 749.6359, 61.1166, 98.3974, 3…
#> $ cent_long <dbl> 151.0465, 151.1274, 151.0985, 151.0385, 151.0090, 151.15…
#> $ cent_lat <dbl> -33.96482, -33.94082, -33.79360, -33.56993, -33.89634, -…
#> $ geometry <list> [151.01558, 151.01209, 151.00812, 151.00593, 151.00422,…