-
Notifications
You must be signed in to change notification settings - Fork 52
NI RFmx LTE Configuration Functions
- Configure RF
- RFmxLTE_CfgReferenceLevel
- RFmxLTE_CfgExternalAttenuation
- RFmxLTE_CfgRFAttenuation
- RFmxLTE_CfgMechanicalAttenuation
- RFmxLTE_AutoLevel
- Trigger
- RFmxLTE_SendSoftwareEdgeTrigger
- RFmxLTE_CfgLinkDirection
- RFmxLTE_CfgDuplexScheme
- RFmxLTE_CfgeNodeBCategory
- RFmxLTE_CfgNumberOfDUTAntennas
- RFmxLTE_CfgTransmitAntennaToAnalyze
- RFmxLTE_CfgNumberOfSubblocks
- RFmxLTE_CfgSubblockFrequencyDefinition
- RFmxLTE_CfgBand
- RFmxLTE_CfgComponentCarrierSpacing
- RFmxLTE_CfgNumberOfComponentCarriers
- RFmxLTE_CfgComponentCarrier
- RFmxLTE_CfgAutoResourceBlockDetectionEnabled
- RFmxLTE_CfgAutoDMRSDetectionEnabled
- RFmxLTE_CfgDownlinkTestModel
- RFmxLTE_CfgDownlinkAutoCellIDDetectionEnabled
- RFmxLTE_CfgEMTCAnalysisEnabled
- Array Configuration
- RFmxLTE_BuildSubblockString
- RFmxLTE_BuildCarrierString
- RFmxLTE_BuildClusterString
int32 __stdcall RFmxLTE_CfgFrequency (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 centerFrequency);
Configures the expected carrier frequency of the RF signal to acquire. The signal analyzer tunes to this frequency. Use "subblock<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name and the subblock number. If you do not specify the signal name, the default signal instance is used. Example: "subblock0" "signal::sig1/subblock0" You can use the RFmxLTE_BuildSubblockString) function to build the selector string. |
centerFrequency | float64 | Specifies the center frequency of the acquired RF signal for a single carrier. The parameter specifies the reference frequency of the subblock for intra-band carrier aggregation. Depending on the RFMXLTE_ATTR_SUBBLOCK_FREQUENCY_DEFINITION) attribute, the center frequency can either be an absolute frequency or relative to the absolute frequency of the center frequency of the first subblock. All component carrier frequencies within the subblock are defined with respect to this frequency. The default value of this parameter is hardware dependent. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_CfgFrequencyReference (niRFmxInstrHandle instrumentHandle, char channelName[], char frequencyReferenceSource[], float64 frequencyReferenceFrequency);
Configures the Reference Clock and the frequency reference source.
This function is a wrapper over the RFmx Instruments API, and calls the RFmxInstr_CfgFrequencyReference) function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
channelName | char[] | Set this parameter to "" (empty string) or NULL. |
frequencyReferenceSource | char[] | Specifies the frequency reference source. |
RFMXLTE_VAL_ONBOARD_CLOCK_STR (OnboardClock) |
PXIe-5663/5663E: The RFmx locks the PXIe-5663/5663E to the PXIe-5652 LO source onboard clock. Connect the REF OUT2 connector (if it exists) on the PXIe-5652 to the PXIe-5622 CLK IN terminal. On versions of the PXIe-5663/5663E that lack a REF OUT2 connector on the PXIe-5652, connect the REF IN/OUT connector on the PXIe-5652 to the PXIe-5622 CLK IN terminal. PXIe-5665: The RFmx locks the PXIe-5665 to the PXIe-5653 LO source onboard clock. Connect the 100 MHz REF OUT terminal on the PXIe-5653 to the PXIe-5622CLK IN terminal. PXIe-5668R: Lock the PXIe-5668 to the PXIe-5653 LO SOURCE onboard clock. Connect the LO2 OUT connector on the PXIe-5606 to the CLK IN connector on the PXIe-5624. PXIe-5644/5645/5646: The RFmx locks the device to its onboard clock. |
---|---|
RFMXLTE_VAL_REF_IN_STR (RefIn) |
PXIe-5663/5663E: Connect the external signal to the PXIe-5652 REF IN/OUT connector. Connect the REF OUT2 connector (if it exists) on the PXIe-5652 to the PXIe-5622 CLK IN terminal. PXIe-5665: Connect the external signal to the PXIe-5653 REF IN connector. Connect the 100 MHz REF OUT terminal on the PXIe-5653 to the PXIe-5622 CLK IN connector. If your external clock signal frequency is set to a frequency other than 10 MHz, set the frequencyReferenceFrequency parameter according to the frequency of your external clock signal. PXIe-5668R: Connect the external signal to the PXIe-5653 REF IN connector. Connect the LO2 OUT on the PXIe-5606 to the CLK IN connector on the PXIe-5622. If your external clock signal frequency is set to a frequency other than 10 MHz, set the frequencyReferenceFrequency parameter according to the frequency of your external clock signal. PXIe-5644R/5645R/5646R: The RFmx locks the device to the signal at the external REF IN connector. |
RFMXLTE_VAL_PXI_CLK_STR(PXI_Clk) |
PXIe-5668R: Lock the PXIe-5653 to the PXI backplane clock. Connect the PXIe-5606 LO2 OUT to the LO2 IN connector on the PXIe-5624R. PXIe-5644/5645/5646, PXIe-5663/5663E/5665: The RFmx locks these devices to the PXI backplane clock. |
RFMXLTE_VAL_CLK_IN_STR (ClkIn) |
PXIe-5663/5663E: The RFmx locks the PXIe-5663/5663E to an external 10 MHz signal. Connect the external signal to the PXIe-5622 CLK IN connector, and connect the PXIe-5622 CLK OUT connector to the REF IN/OUT connector on the PXIe-5652. PXIe-5665: The RFmx locks the PXIe-5665 to an external 100 MHz signal. Connect the external signal to the PXIe-5622 CLK IN connector, and connect the PXIe-5622 CLK OUT connector to the REF IN connector on the PXIe-5653. Set the frequencyReferenceFrequency parameter to 100 MHz. PXIe-5668: Lock the PXIe-5668 to an external 100 MHz signal. Connect the external signal to the CLK IN connector on the PXIe-5624, and connect the PXIe-5624 CLK OUT connector to the REF IN connector on the PXIe-5653. Set the frequencyReferenceFrequency parameter to 100 MHz. PXIe-5644/5645/5646: This configuration does not apply to the PXIe-5644/5645/5646. |
frequencyReferenceFrequency | float64 | Specifies the Reference Clock rate when you set the frequencyReferenceSource parameter to RFMXLTE_VAL_CLK_IN_STR or RFMXLTE_VAL_REF_IN_STR. This value is expressed in Hz. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_CfgFrequencyEARFCN (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 linkDirection, int32 band, int32 EARFCN);
Configures the expected carrier frequency of the RF signal to acquire. The signal analyzer tunes to the E-UTRA absolute radio frequency channel number (EARFCN) frequency. Use "subblock<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name and the subblock number. If you do not specify the signal name, the default signal instance is used. Example: "subblock0" "signal::sig1/subblock0" You can use the RFmxLTE_BuildSubblockString) function to build the selector string. |
linkDirection | int32 | Specifies the link direction of the received signal. |
RFMXLTE_VAL_LINK_DIRECTION_DOWNLINK (0) | The measurement uses 3GPP LTE downlink specification to measure the received signal. |
---|---|
RFMXLTE_VAL_LINK_DIRECTION_UPLINK (1) | The measurement uses 3GPP LTE uplink specification to measure the received signal. |
band | int32 | Specifies the E-UTRA operating frequency band of a subblock as defined in section 5.2 of the 3GPP TS 36.521 specification. Valid values are from 1 to 255, inclusive. |
EARFCN | int32 | Specifies the evolved universal terrestrial radio access (E-UTRA) absolute radio frequency channel number. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_CfgReferenceLevel (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 referenceLevel);
Configures the reference level, which represents the maximum expected power of an RF input signal.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
referenceLevel | float64 | Specifies the reference level, which represents the maximum expected power of the RF input signal. This value is expressed in dBm for RF devices and Vpk-pk for baseband devices. The default value of this parameter is hardware dependent. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_CfgExternalAttenuation (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 externalAttenuation);
Specifies the attenuation of a switch or cable connected to the RF IN connector of the signal analyzer.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
externalAttenuation | float64 | Specifies the attenuation of a switch or cable connected to the RF IN connector of the signal analyzer. This value is expressed in dB. For more information about attenuation, refer to the RF Attenuation and Signal Levels topic for your device in the NI RF Vector Signal Analyzers Help. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_CfgRFAttenuation (niRFmxInstrHandle instrumentHandle, char channelName[], int32 RFAttenuationAuto, float64 RFAttenuationValue);
Configures the nominal attenuation and the RFmx setting.
This function is a wrapper over the RFmx Instruments API, and calls the RFmxInstr_CfgRFAttenuation) function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
channelName | char[] | Set this parameter to "" (empty string) or NULL. |
RFAttenuationAuto | int32 | Specifies whether the RFmx computes the RF attenuation. |
RFMXLTE_VAL_RF_ATTENUATION_AUTO_FALSE(0) | Specifies that the RFmx uses the value configured using the RFAttenuationValue parameter. |
---|---|
RFMXLTE_VAL_RF_ATTENUATION_AUTO_TRUE(1) | Specifies that the RFmx computes the RF attenuation. |
RFAttenuationValue | float64 | Specifies the nominal attenuation setting for all attenuators before the first mixer in the RF signal chain when you set the RFAttenuationAuto parameter to RFMXLTE_VAL_RF_ATTENUATION_AUTO_FALSE. This value is expressed in dB. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_CfgMechanicalAttenuation (niRFmxInstrHandle instrumentHandle, char channelName[], int32 mechanicalAttenuationAuto, float64 mechanicalAttenuationValue);
Configures the mechanical attenuation and the RFmx attenuation hardware settings.
This function is a wrapper over the RFmx Instruments API, and calls the RFmxInstr_CfgMechanicalAttenuation) function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
channelName | char[] | Set this parameter to "" (empty string) or NULL. |
mechanicalAttenuationAuto | int32 | Specifies whether the RFmx chooses an attenuation setting based on the hardware settings. |
RFMXLTE_VAL_MECHANICAL_ATTENUATION_AUTO_FALSE(0) | Specifies that the RFmx uses the value configured in the mechanicalAttenuationValue parameter. |
---|---|
RFMXLTE_VAL_MECHANICAL_ATTENUATION_AUTO_TRUE(1) | Specifies that the measurement computes the mechanical attenuation. |
mechanicalAttenuationValue | float64 | Specifies the level of mechanical attenuation for the RF path. This value is expressed in dB. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_AutoLevel (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 measurementInterval, float64* referenceLevel);
Examines the input signal to calculate the peak power level and sets it as the value of the RFMXLTE_ATTR_REFERENCE_LEVEL) attribute. Use this function to calculate an approximate setting for the reference level. The RFmxLTE Auto Level function completes the following tasks: You can also specify the starting reference level using RFMXLTE_ATTR_AUTO_LEVEL_INITIAL_REFERENCE_LEVEL) attribute. When using PXIe-5663/5665/5668R devices, NI recommends that you set an appropriate value for mechanical attenuation before calling the RFmxLTE Auto Level function. Setting an appropriate value for mechanical attenuation reduces the number of times the attenuator settings are changed by this function; thus reducing wear and tear, and maximizing the life time of the attenuator.
- Resets the mixer level, mixer level offset, and IF output power offset.
- Sets the starting reference level to the maximum reference level supported by the device based on the current RF attenuation, mechanical attenuation, and preamplifier enabled settings.
- Iterates to adjust the reference level based on the input signal peak power.
- Uses immediate triggering and restores the trigger settings back to user setting after the execution.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
measurementInterval | float64 | Specifies the acquisition length. This value is expressed in seconds. Use this value to compute the number of samples to acquire from the signal analyzer. Auto Level VI does not use any trigger for acquisition. It ignores the user-configured trigger properties. NI recommends that you set a sufficiently high measurement interval to ensure that the acquired waveform is at least as long as one period of the signal. |
Output | ||
Name | Type | Description |
referenceLevel | float64* | Returns the estimated peak power level of the input signal. This value is expressed in dBm for RF devices and Vpk-pk for baseband devices. The default value of this parameter is hardware dependent. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_DisableTrigger (niRFmxInstrHandle instrumentHandle, char selectorString[]);
Configures the device to not wait for a trigger to mark a reference point within a record. This function defines the signal triggering as immediate.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_CfgDigitalEdgeTrigger (niRFmxInstrHandle instrumentHandle, char selectorString[], char digitalEdgeSource[], int32 digitalEdge, float64 triggerDelay, int32 enableTrigger);
Configures the device to wait for a digital edge trigger and then marks a reference point within the record.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
digitalEdgeSource | char[] | Specifies the source terminal for the digital edge trigger. This parameter is used when you set the RFMXLTE_ATTR_TRIGGER_TYPE) attribute to RFMXLTE_VAL_TRIGGER_TYPE_DIGITAL_EDGE. The default value of this parameter is hardware dependent. |
RFMXLTE_VAL_PFI0_STR (PFI0) | The trigger is received on PFI 0. |
---|---|
RFMXLTE_VAL_PFI1_STR (PFI1) | The trigger is received on PFI 1. The trigger is received on PFI 1. |
RFMXLTE_VAL_PXI_TRIG0_STR (PXI_Trig0) | The trigger is received on PXI trigger line 0. |
RFMXLTE_VAL_PXI_TRIG1_STR (PXI_Trig1) | The trigger is received on PXI trigger line 1. |
RFMXLTE_VAL_PXI_TRIG2_STR (PXI_Trig2) | The trigger is received on PXI trigger line 2. |
RFMXLTE_VAL_PXI_TRIG3_STR (PXI_Trig3) | The trigger is received on PXI trigger line 3. |
RFMXLTE_VAL_PXI_TRIG4_STR (PXI_Trig4) | The trigger is received on PXI trigger line 4. |
RFMXLTE_VAL_PXI_TRIG5_STR (PXI_Trig5) | The trigger is received on PXI trigger line 5. |
RFMXLTE_VAL_PXI_TRIG6_STR (PXI_Trig6) | The trigger is received on PXI trigger line 6. |
RFMXLTE_VAL_PXI_TRIG7_STR (PXI_Trig7) | The trigger is received on PXI trigger line 7. |
RFMXLTE_VAL_PXI_STAR_STR (PXI_STAR) | The trigger is received on the PXI star trigger line. |
RFMXLTE_VAL_PXI_STAR_DStarB (PXI_DStarB) | The trigger is received on the PXI DStarB trigger line. |
RFMXLTE_VAL_TimerEvent (TimerEvent) | The trigger is received from the Timer Event. |
digitalEdge | int32 | Specifies the source terminal for the digital edge trigger. This parameter is used when you set the RFMXLTE_ATTR_TRIGGER_TYPE) attribute to RFMXLTE_VAL_TRIGGER_TYPE_DIGITAL_EDGE. |
RFMXLTE_VAL_DIGITAL_EDGE_RISING_EDGE (0) | The trigger asserts on the rising edge of the signal. |
---|---|
RFMXLTE_VAL_DIGITAL_EDGE_FALLING_EDGE (1) | The trigger asserts on the falling edge of the signal. |
triggerDelay | float64 | Specifies the trigger delay time. This value is expressed in seconds. If the delay is negative, the measurement acquires pretrigger samples. If the delay is positive, the measurement acquires posttrigger samples. |
enableTrigger | int32 | Specifies whether to enable the trigger. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_CfgIQPowerEdgeTrigger (niRFmxInstrHandle instrumentHandle, char selectorString[], char IQPowerEdgeSource[], int32 IQPowerEdgeSlope, float64 IQPowerEdgeLevel, float64 triggerDelay, int32 triggerMinQuietTimeMode, float64 triggerMinQuietTimeDuration, int32 IQPowerEdgeLevelType, int32 enableTrigger);
Configures the device to wait for the complex power of the I/Q data to cross the specified threshold and then marks a reference point within the record. To trigger on bursty signals, specify a minimum quiet time, which ensures that the trigger does not occur in the middle of the burst signal. The quiet time must be set to a value smaller than the time between bursts, but large enough to ignore power changes within a burst.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
IQPowerEdgeSource | char[] | Specifies the channel from which the device monitors the trigger. This parameter is used only when you set the RFMXLTE_ATTR_TRIGGER_TYPE) attribute to RFMXLTE_VAL_TRIGGER_TYPE_IQ_POWER_EDGE. The default value of this parameter is hardware dependent. |
IQPowerEdgeSlope | int32 | Specifies whether the device asserts the trigger when the signal power is rising or when it is falling. The device asserts the trigger when the signal power exceeds the specified level with the slope you specify. This parameter is used only when you set the RFMXLTE_ATTR_TRIGGER_TYPE attribute to RFMXLTE_VAL_TRIGGER_TYPE_IQ_POWER_EDGE. |
RFMXLTE_VAL_IQ_POWER_EDGE_RISING_SLOPE (0) | The trigger asserts when the signal power is rising. |
---|---|
RFMXLTE_VAL_IQ_POWER_EDGE_FALLING_SLOPE (1) | The trigger asserts when the signal power is falling. |
IQPowerEdgeLevel | float64 | Specifies the power level at which the device triggers. This value is expressed in dB when you set the IQPowerEdgeLevelType parameter to RFMXLTE_VAL_IQ_POWER_EDGE_TRIGGER_LEVEL_TYPE_RELATIVE, and this value is expressed in dBm when you set the IQPowerEdgeLevelType parameter to RFMXLTE_VAL_IQ_POWER_EDGE_TRIGGER_LEVEL_TYPE_ABSOLUTE. The device asserts the trigger when the signal exceeds the level specified by the value of this parameter, taking into consideration the specified slope. This parameter is used only when you set the RFMXLTE_ATTR_TRIGGER_TYPE attribute to RFMXLTE_VAL_TRIGGER_TYPE_IQ_POWER_EDGE. The default value of this parameter is hardware dependent. |
triggerDelay | float64 | Specifies the trigger delay time. This value is expressed in seconds. If the delay is negative, the measurement acquires pretrigger samples. If the delay is positive, the measurement acquires posttrigger samples. |
triggerMinQuietTimeMode | int32 | Specifies whether the measurement computes the minimum quiet time used for triggering. |
RFMXLTE_VAL_TRIGGER_MINIMUM_QUIET_TIME_MODE_MANUAL (0) | The minimum quiet time for triggering is the value of the minQuietTime parameter. |
---|---|
RFMXLTE_VAL_TRIGGER_MINIMUM_QUIET_TIME_MODE_AUTO (1) | The measurement computes the minimum quiet time used for triggering. |
triggerMinQuietTimeDuration | float64 | Specifies the time duration for which the signal must be quiet before the signal analyzer arms the I/Q power edge trigger. This value is expressed in seconds. If you set the RFMXLTE_ATTR_IQ_POWER_EDGE_TRIGGER_SLOPE attribute to RFMXLTE_VAL_IQ_POWER_EDGE_RISING_SLOPE, the signal is quiet below the trigger level. If you set the RFMXLTE_ATTR_IQ_POWER_EDGE_TRIGGER_SLOPE attribute to RFMXLTE_VAL_IQ_POWER_EDGE_FALLING_SLOPE, the signal is quiet above the trigger level. |
IQPowerEdgeLevelType | int32 | Specifies the reference for theIQPowerEdgeLevel parameter. The IQPowerEdgeLevelType parameter is used only when you set the RFMXLTE_ATTR_TRIGGER_TYPE attribute to RFMXLTE_VAL_TRIGGER_TYPE_IQ_POWER_EDGE. |
RFMXLTE_VAL_IQ_POWER_EDGE_TRIGGER_LEVEL_TYPE_RELATIVE (0) | The IQ Power Edge Level attribute is relative to the value of the RFMXLTE_ATTR_REFERENCE_LEVEL) attribute. |
---|---|
RFMXLTE_VAL_IQ_POWER_EDGE_TRIGGER_LEVEL_TYPE_ABSOLUTE (1) | The IQ Power Edge Level attribute specifies the absolute power. |
enableTrigger | int32 | Specifies whether to enable the trigger. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_CfgSoftwareEdgeTrigger (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 triggerDelay, int32 enableTrigger);
Configures the device to wait for a software trigger and then marks a reference point within the record.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
triggerDelay | float64 | Specifies the trigger delay time. This value is expressed in seconds. If the delay is negative, the measurement acquires pretrigger samples. If the delay is positive, the measurement acquires posttrigger samples. |
enableTrigger | int32 | Specifies whether to enable the trigger. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_SendSoftwareEdgeTrigger (niRFmxInstrHandle instrumentHandle);
Sends a trigger to the device when you use the RFmxLTE_CfgTrigger function to choose a software version of a trigger and the device is waiting for the trigger to be sent. You can also use this function to override a hardware trigger. This function returns an error in the following situations:
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_CfgLinkDirection (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 linkDirection);
Configures the link direction of the signal being measured.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
linkDirection | int32 | Specifies the link direction of the received signal. |
RFMXLTE_VAL_LINK_DIRECTION_DOWNLINK (0) | The measurement uses 3GPP LTE downlink specification to measure the received signal. |
---|---|
RFMXLTE_VAL_LINK_DIRECTION_UPLINK (1) | The measurement uses 3GPP LTE uplink specification to measure the received signal. |
RFMXLTE_VAL_LINK_DIRECTION_SIDELINK (2) | The measurement uses 3GPP LTE sidelink specification to measure the received signal. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_CfgDuplexScheme (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 duplexScheme, int32 uplinkDownlinkConfiguration);
Configures the duplexing technique of the signal being measured.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
duplexScheme | int32 | Specifies the duplexing technique of the signal being measured. |
RFMXLTE_VAL_DUPLEX_SCHEME_FDD (0) | Specifies that the duplexing technique is frequency-division duplexing. |
---|---|
RFMXLTE_VAL_DUPLEX_SCHEME_TDD (1) | Specifies that the duplexing technique is time-division duplexing. |
RFMXLTE_VAL_DUPLEX_SCHEME_LAA (2) | Specifies that the duplexing technique is license assisted access. |
uplinkDownlinkConfiguration | int32 | Specifies the configuration of the LTE frame structure in the time division duplex (TDD) mode. To configure the LTE frame, refer to table 4.2-2 of the 3GPP TS 36.211 specification. |
RFMXLTE_VAL_UPLINK_DOWNLINK_CONFIGURATION_0 (0) | The configuration of the LTE frame structure in the TDD duplex mode is 0. |
---|---|
RFMXLTE_VAL_UPLINK_DOWNLINK_CONFIGURATION_1 (1) | The configuration of the LTE frame structure in the TDD duplex mode is 1. |
RFMXLTE_VAL_UPLINK_DOWNLINK_CONFIGURATION_2 (2) | The configuration of the LTE frame structure in the TDD duplex mode is 2. |
RFMXLTE_VAL_UPLINK_DOWNLINK_CONFIGURATION_3 (3) | The configuration of the LTE frame structure in the TDD duplex mode is 3. |
RFMXLTE_VAL_UPLINK_DOWNLINK_CONFIGURATION_4 (4) | The configuration of the LTE frame structure in the TDD duplex mode is 4. |
RFMXLTE_VAL_UPLINK_DOWNLINK_CONFIGURATION_5 (5) | The configuration of the LTE frame structure in the TDD duplex mode is 5. |
RFMXLTE_VAL_UPLINK_DOWNLINK_CONFIGURATION_6 (6) | The configuration of the LTE frame structure in the TDD duplex mode is 6. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_CfgeNodeBCategory (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 eNodeBCategory);
Configures the eNodeB category of the signal being measured.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
eNodeBCategory | int32 | Specifies the downlink eNodeB (Base Station) category. |
RFMXLTE_VAL_ENODEB_WIDE_AREA_BASE_STATION_CATEGORY_A (0) | Specifies the eNodeB is Wide Area Base Station - Category A. |
---|---|
RFMXLTE_VAL_ENODEB_WIDE_AREA_BASE_STATION_CATEGORY_B_OPTION1 (1) | Specifies the eNodeB is Wide Area Base Station - Category B Option1. |
RFMXLTE_VAL_ENODEB_WIDE_AREA_BASE_STATION_CATEGORY_B_OPTION2 (2) | Specifies the eNodeB is Wide Area Base Station - Category B Option2. |
RFMXLTE_VAL_ENODEB_LOCAL_AREA_BASE_STATION (3) | Specifies the eNodeB is Local Area Base Station. |
RFMXLTE_VAL_ENODEB_HOME_BASE_STATION (4) | Specifies the eNodeB is Home Base Station. |
RFMXLTE_VAL_ENODEB_MEDIUM_RANGE_BASE_STATION (5) | Specifies the eNodeB is Medium Range Base Station. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_CfgNumberOfDUTAntennas (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 numberOfDUTAntennas);
Configures the number of physical antennas used for transmission by the DUT in a MIMO setup.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
numberOfDUTAntennas | int32 | Specifies the number of physical antennas available at the DUT for transmission in a MIMO setup. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_CfgTransmitAntennaToAnalyze (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 transmitAntennaToAnalyze);
Configures the current physical antenna of the DUT in the MIMO setup being tested.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
transmitAntennaToAnalyze | int32 | Specifies the physical antenna connected to the analyzer. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_CfgNumberOfSubblocks (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 numberOfSubblocks);
Configures the number of subblocks.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
numberOfSubblocks | int32 | Specifies the number of subblocks that are configured in the intra-band noncontiguous carrier aggregation. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_CfgSubblockFrequencyDefinition (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 subblockFrequencyDefinition);
Configures the subblock center frequency definition, which can be an absolute frequency or relative to the absolute frequency of the first subblock. Use "subblock<n>" as the selector string to configure this function. Refer to the Center Frequency) topic for more information.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name and the subblock number. If you do not specify the signal name, the default signal instance is used. Example: "subblock0" "signal::sig1/subblock0" You can use the RFmxLTE_BuildSubblockString) function to build the selector string. |
subblockFrequencyDefinition | int32 | Specifies if the subblock center frequency is an absolute frequency or relative to the absolute frequency of the first subblock. This parameter is ignored for the first subblock and its center frequency is considered to be absolute by the measurement. |
RFMXLTE_VAL_SUBBLOCK_FREQUENCY_DEFINITION_RELATIVE (0) | Subblock center frequency is relative to the center frequency of the first subblock. |
---|---|
RFMXLTE_VAL_SUBBLOCK_FREQUENCY_DEFINITION_ABSOLUTE (1) | Subblock center frequency is an absolute frequency. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_CfgBand (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 band);
Configures the evolved universal terrestrial radio access (E-UTRA) operating frequency band of a subblock. Use "subblock<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name and the subblock number. If you do not specify the signal name, the default signal instance is used. Example: "subblock0" "signal::sig1/subblock0" You can use the RFmxLTE_BuildSubblockString) function to build the selector string. |
band | int32 | Specifies the E-UTRA operating frequency band of a subblock as defined in section 5.2 of the 3GPP TS 36.521 specification. Valid values are from 1 to 255, inclusive. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_CfgComponentCarrierSpacing (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 componentCarrierSpacingType, int32 componentCarrierAtCenterFrequency);
Configures the componentCarrierSpacingType and componentCarrierAtCenterFrequency parameters, which help to set the spacing between adjacent component carriers within a subblock. Use "subblock<n>" as the selector string to configure this function. Refer to the Channel Spacing) and Carrier Frequency Offset Definition and Reference Frequency) topics for more information about carrier spacing.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name and the subblock number. If you do not specify the signal name, the default signal instance is used. Example: "subblock0" "signal::sig1/subblock0" You can use the RFmxLTE_BuildSubblockString) function to build the selector string. |
componentCarrierSpacingType | int32 | Specifies the spacing between the two adjacent component carriers within a subblock. |
RFMXLTE_VAL_COMPONENT_CARRIER_SPACING_TYPE_NOMINAL (0) | Calculates the frequency spacing between component carriers as defined in section 5.4.1A of the 3GPP TS 36.521 specification, and sets the RFMXLTE_ATTR_COMPONENT_CARRIER_FREQUENCY) attribute. |
---|---|
RFMXLTE_VAL_COMPONENT_CARRIER_SPACING_TYPE_MINIMUM (1) | Calculates the frequency spacing between component carriers as defined in section 5.4.1A of the 3GPP TS 36.521 specification, and sets the RFMXLTE_ATTR_COMPONENT_CARRIER_FREQUENCY attribute. |
RFMXLTE_VAL_COMPONENT_CARRIER_SPACING_TYPE_USER (2) | The CC frequency that you configure in the RFMXLTE_ATTR_COMPONENT_CARRIER_FREQUENCY attribute is used. |
componentCarrierAtCenterFrequency | int32 | Specifies the index of the component carrier having its center at the user-configured center frequency. RFmxLTE uses this attribute along with the CC Spacing Type attribute to calculate the component carrier frequency. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_CfgNumberOfComponentCarriers (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 numberOfComponentCarriers);
Configures the number of component carriers within a subblock. Use "subblock<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name and the subblock number. If you do not specify the signal name, the default signal instance is used. Example: "subblock0" "signal::sig1/subblock0" You can use the RFmxLTE_BuildSubblockString) function to build the selector string. |
numberOfComponentCarriers | int32 | Specifies the number of component carriers configured within a subblock. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_CfgComponentCarrier (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 componentCarrierBandwidth, float64 componentCarrierFrequency, int32 cellID);
Configures the componentCarrierBandwidth, componentCarrierFrequency, and cellID of the component carrier. Use "carrier<k>" or "subblock<n>/carrier<k>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name, subblock number and carrier number. If you do not specify the signal name, the default signal instance is used. Example: "subblock0/carrier0" "signal::sig1/subblock0/carrier0" You can use the RFmxLTE_BuildCarrierString) function to build the selector string. |
componentCarrierBandwidth | float64 | Specifies the channel bandwidths of the signal being measured. |
componentCarrierFrequency | float64 | Specifies the offsets of the component carrier from the subblock center frequency that you configure in the RFMXLTE_ATTR_CENTER_FREQUENCY) attribute. This parameter is applicable only if you set the RFMXLTE_ATTR_COMPONENT_CARRIER_SPACING_TYPE) attribute to RFMXLTE_VAL_COMPONENT_CARRIER_SPACING_TYPE_USER. |
cellID | int32 | Specifies the physical layer cell identities. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_CfgAutoResourceBlockDetectionEnabled (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 autoResourceBlockDetectionEnabled);
Configures whether the values of the RFMXLTE_ATTR_PUSCH_MODULATION_TYPE), RFMXLTE_ATTR_PUSCH_NUMBER_OF_RESOURCE_BLOCK_CLUSTERS), RFMXLTE_ATTR_PUSCH_RESOURCE_BLOCK_OFFSET), and RFMXLTE_ATTR_PUSCH_NUMBER_OF_RESOURCE_BLOCKS) attributes are automatically detected by the measurement or if you specify the values of these attributes. The measurement ignores this function, when you set the RFMXLTE_ATTR_LINK_DIRECTION) attribute to RFMXLTE_VAL_LINK_DIRECTION_DOWNLINK.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
autoResourceBlockDetectionEnabled | int32 | Specifies whether the values of the RFMXLTE_ATTR_PUSCH_MODULATION_TYPE, PUSCH Num Clusters, RFMXLTE_ATTR_PUSCH_RESOURCE_BLOCK_OFFSET, and RFMXLTE_ATTR_PUSCH_NUMBER_OF_RESOURCE_BLOCKS attributes are automatically detected by the measurement or if you specify the values of these attributes. |
RFMXLTE_VAL_AUTO_RESOURCE_BLOCK_DETECTION_ENABLED_FALSE (0) | The values of the RFMXLTE_ATTR_PUSCH_MODULATION_TYPE, RFMXLTE_ATTR_PUSCH_NUMBER_OF_RESOURCE_BLOCK_CLUSTERS, RFMXLTE_ATTR_PUSCH_RESOURCE_BLOCK_OFFSET, and RFMXLTE_ATTR_PUSCH_NUMBER_OF_RESOURCE_BLOCKS attributes that you specify are used for the measurement. |
---|---|
RFMXLTE_VAL_AUTO_RESOURCE_BLOCK_DETECTION_ENABLED_TRUE (1) | The values of the RFMXLTE_ATTR_PUSCH_MODULATION_TYPE, RFMXLTE_ATTR_PUSCH_NUMBER_OF_RESOURCE_BLOCK_CLUSTERS, RFMXLTE_ATTR_PUSCH_RESOURCE_BLOCK_OFFSET, and RFMXLTE_ATTR_PUSCH_NUMBER_OF_RESOURCE_BLOCKS attributes are detected automatically and used for the measurement. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_CfgAutoDMRSDetectionEnabled (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 autoDMRSDetectionEnabled);
Configures whether the demodulation reference signal (DMRS) parameters are configured by a user or automatically detected by a measurement.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
autoDMRSDetectionEnabled | int32 | Specifies whether you need to configure the DMRS parameters, such as the values of the RFMXLTE_ATTR_UPLINK_GROUP_HOPPING_ENABLED), RFMXLTE_ATTR_UPLINK_SEQUENCE_HOPPING_ENABLED), RFMXLTE_ATTR_CELL_ID), RFMXLTE_ATTR_PUSCH_N_DMRS_1), RFMXLTE_ATTR_PUSCH_N_DMRS_2), and RFMXLTE_ATTR_PUSCH_DELTA_SEQUENCE_SHIFT) attributes, or if the measurement should automatically detect the values of these attributes. |
RFMXLTE_VAL_AUTO_DMRS_DETECTION_ENABLED_FALSE (0) | The user-defined DMRS parameters are used. |
---|---|
RFMXLTE_VAL_AUTO_DMRS_DETECTION_ENABLED_TRUE (1) | The DMRS parameters are automatically detected. Measurements returns an error if you set the RFMXLTE_ATTR_MODACC_SYNCHRONIZATION_MODE) attribute to RFMXLTE_VAL_MODACC_SYNCHRONIZATION_MODE_FRAME because it is not possible to get the frame boundary when RFmx automatically detects the DMRS parameters. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_CfgDownlinkTestModel (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 downlinkTestModel);
Configures the EUTRA test model type. Use "carrier<k>" or "subblock<n>/carrier<k>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name, subblock number and carrier number. If you do not specify the signal name, the default signal instance is used. Example: "subblock0/carrier0" "signal::sig1/subblock0/carrier0" You can use the RFmxLTE_BuildCarrierString) function to build the selector string. |
downlinkTestModel | int32 | Specifies the EUTRA test model type when you set the RFMXLTE_ATTR_DOWNLINK_CHANNEL_CONFIGURATION_MODE) attribute to RFMXLTE_VAL_DOWNLINK_CHANNEL_CONFIGURATION_MODE_TEST_MODEL. Refer to section 6.1.1 of the 3GPP 36.141 specification for more information regarding test model configurations. |
RFMXLTE_VAL_DOWNLINK_TEST_MODEL_TM1_1 (0) | Specifies an E-UTRA Test Model 1. |
---|---|
RFMXLTE_VAL_DOWNLINK_TEST_MODEL_TM1_2 (1) | Specifies an E-UTRA Test Model 1.2. |
RFMXLTE_VAL_DOWNLINK_TEST_MODEL_TM2 (2) | Specifies an E-UTRA Test Model 2. |
RFMXLTE_VAL_DOWNLINK_TEST_MODEL_TM2A (3) | Specifies an E-UTRA Test Model 2a. |
RFMXLTE_VAL_DOWNLINK_TEST_MODEL_TM2B (8) | Specifies an E-UTRA Test Model 2b. |
RFMXLTE_VAL_DOWNLINK_TEST_MODEL_TM3_1 (4) | Specifies an E-UTRA Test Model 3.1. |
RFMXLTE_VAL_DOWNLINK_TEST_MODEL_TM3_1A (7) | Specifies an E-UTRA Test Mode 3.1a. |
RFMXLTE_VAL_DOWNLINK_TEST_MODEL_TM3_1B (9) | Specifies an E-UTRA Test Model 3.1b. |
RFMXLTE_VAL_DOWNLINK_TEST_MODEL_TM3_2 (5) | Specifies an E-UTRA Test Model 3.2. |
RFMXLTE_VAL_DOWNLINK_TEST_MODEL_TM3_3 (6) | Specifies an E-UTRA Test Model 3.3. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_CfgDownlinkAutoCellIDDetectionEnabled (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 autoCellIDDetectionEnabled);
Configures whether the cell ID is configured by the user or auto-detected by the measurement.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
autoCellIDDetectionEnabled | int32 | Specifies whether to enable autodetection the of cell ID. If signal being measured does not contain primary and secondary sync signal (PSS/SSS), autodetection of the cell ID is not possible. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_CfgEMTCAnalysisEnabled (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 EMTCAnalysisEnabled);
Configures whether the component carrier contains an enhanced machine type communications (Cat-M1 or Cat-M2) transmission. Use "carrier<k>" or "subblock<n>/carrier<k>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name, subblock number and carrier number. If you do not specify the signal name, the default signal instance is used. Example: "subblock0/carrier0" "signal::sig1/subblock0/carrier0" You can use the RFmxLTE_BuildCarrierString) function to build the selector string. |
EMTCAnalysisEnabled | int32 | Specifies whether the component carrier contains an eMTC transmission. |
RFMXLTE_VAL_EMTC_ANALYSIS_ENABLED_FALSE (0) | The measurement considers the signal as LTE FDD/TDD transmission. |
---|---|
RFMXLTE_VAL_EMTC_ANALYSIS_ENABLED_TRUE (1) | Detects the eMTC half duplex pattern, narrow band hopping, and eMTC guard symbols present in the uplink transmission. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_CfgComponentCarrierArray (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 componentCarrierBandwidth[], float64 componentCarrierFrequency[], int32 cellID[], int32 numberOfElements);
Configures an array of bandwidths, carrier offset frequencies, and cell IDs of component carriers. Use "subblock<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name and the subblock number. If you do not specify the signal name, the default signal instance is used. Example: "subblock0" "signal::sig1/subblock0" You can use the RFmxLTE_BuildSubblockString) function to build the selector string. |
componentCarrierBandwidth | float64[] | Specifies the array of channel bandwidths of the signal being measured. |
componentCarrierFrequency | float64[] | Specifies the array of offsets of the component carrier from the subblock center frequency that you configure in the RFMXLTE_ATTR_CENTER_FREQUENCY) attribute. This parameter is applicable only if you set the RFMXLTE_ATTR_COMPONENT_CARRIER_SPACING_TYPE) attribute to RFMXLTE_VAL_COMPONENT_CARRIER_SPACING_TYPE_USER. |
cellID | int32[] | Specifies the array of the physical layer cell identities. |
numberOfElements | int32 | Specifies the number of elements in each array. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_CfgDownlinkTestModelArray (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 downlinkTestModel[], int32 numberOfElements);
Configures the EUTRA test model type for each component carrier within the subblock.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name and the subblock number. If you do not specify the signal name, the default signal instance is used. Example: "subblock0" "signal::sig1/subblock0" You can use the RFmxLTE_BuildSubblockString) function to build the selector string. |
downlinkTestModel | int32[] | Specifies the array of EUTRA test model types when you set the RFMXLTE_ATTR_DOWNLINK_CHANNEL_CONFIGURATION_MODE) attribute to RFMXLTE_VAL_DOWNLINK_CHANNEL_CONFIGURATION_MODE_TEST_MODEL. Refer to section 6.1.1 of the 3GPP 36.141 specification for more information regarding test model configurations. |
RFMXLTE_VAL_DOWNLINK_TEST_MODEL_TM1_1 (0) | Specifies an E-UTRA Test Model 1. |
---|---|
RFMXLTE_VAL_DOWNLINK_TEST_MODEL_TM1_2 (1) | Specifies an E-UTRA Test Model 1.2. |
RFMXLTE_VAL_DOWNLINK_TEST_MODEL_TM2 (2) | Specifies an E-UTRA Test Model 2. |
RFMXLTE_VAL_DOWNLINK_TEST_MODEL_TM2A (3) | Specifies an E-UTRA Test Model 2a. |
RFMXLTE_VAL_DOWNLINK_TEST_MODEL_TM2B (8) | Specifies an E-UTRA Test Model 2b. |
RFMXLTE_VAL_DOWNLINK_TEST_MODEL_TM3_1 (4) | Specifies an E-UTRA Test Model 3.1. |
RFMXLTE_VAL_DOWNLINK_TEST_MODEL_TM3_1A (7) | Specifies an E-UTRA Test Mode 3.1a. |
RFMXLTE_VAL_DOWNLINK_TEST_MODEL_TM3_1B (9) | Specifies an E-UTRA Test Model 3.1b. |
RFMXLTE_VAL_DOWNLINK_TEST_MODEL_TM3_2 (5) | Specifies an E-UTRA Test Model 3.2. |
RFMXLTE_VAL_DOWNLINK_TEST_MODEL_TM3_3 (6) | Specifies an E-UTRA Test Model 3.3. |
numberOfElements | int32 | Specifies the number of elements in each array. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_BuildSubblockString (char selectorString[], int32 subblockNumber, int32 selectorStringOutLength, char selectorStringOut[]);
Creates the subblock string to use as the selector string with the subblock configuration or fetch attributes and functions.
Input | ||
---|---|---|
Name | Type | Description |
selectorString | char[] | Specifies a selector string) comprising of the signal name and the result name. If you do not specify the signal name, the default signal instance is used. If you do not specify the result name, the default result instance is used. Example: "signal::sig1" "result::r1" "signal::sig1/result::r1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
subblockNumber | int32 | Specifies the number of subblocks that are configured in the intra-band noncontiguous carrier aggregation. Set this parameter to 1, which is the default, for single carrier and intra-band contiguous carrier aggregation. |
selectorStringOutLength | int32 | Specifies the length of the string that is returned by the selectorStringOut parameter. To get the minimum buffer size required to build the selector string, set the selectorStringOutLength parameter to 0. |
Output | ||
Name | Type | Description |
selectorStringOut | char[] | Returns the selector string created by this function. |
Name | Type | Description |
---|---|---|
statusOrRequiredSize | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. When the statusOrRequiredSize return value returns the buffer size, the status code is not returned. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_BuildCarrierString (char selectorString[], int32 carrierNumber, int32 selectorStringOutLength, char selectorStringOut[]);
Creates the carrier string to use as the selector string with the SEM and ACP carrier configuration or fetch attributes and functions.
Input | ||
---|---|---|
Name | Type | Description |
selectorString | char[] | Specifies a selector string) comprising of the signal name and the result name. If you do not specify the signal name, the default signal instance is used. If you do not specify the result name, the default result instance is used. Example: "signal::sig1" "result::r1" "signal::sig1/result::r1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
carrierNumber | int32 | Specifies the carrier number for building the selector string. |
selectorStringOutLength | int32 | Specifies the length of the string that is returned by the selectorStringOut parameter. To get the minimum buffer size required to build the selector string, set the selectorStringOutLength parameter to 0. |
Output | ||
Name | Type | Description |
selectorStringOut | char[] | Returns the selector string created by this function. |
Name | Type | Description |
---|---|---|
statusOrRequiredSize | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. When the statusOrRequiredSize return value returns the buffer size, the status code is not returned. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_BuildClusterString (char selectorString[], int32 clusterNumber, int32 selectorStringOutLength, char selectorStringOut[]);
Creates a cluster string to use as the selector string with the ModAcc cluster configuration or the fetch attributes and functions.
Input | ||
---|---|---|
Name | Type | Description |
selectorString | char[] | Specifies a selector string) comprising of the signal name and the result name. If you do not specify the signal name, the default signal instance is used. If you do not specify the result name, the default result instance is used. Example: "signal::sig1" "result::r1" "signal::sig1/result::r1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
clusterNumber | int32 | Specifies the cluster number. |
selectorStringOutLength | int32 | Specifies the length of the string that is returned by the selectorStringOut parameter. To get the minimum buffer size required to build the selector string, set the selectorStringOutLength parameter to 0. |
Output | ||
Name | Type | Description |
selectorStringOut | char[] | Returns the selector string created by this function. |
Name | Type | Description |
---|---|---|
statusOrRequiredSize | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. When the statusOrRequiredSize return value returns the buffer size, the status code is not returned. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
Creating and Setting Up a gRPC Server
Session Utilities API Reference
gRPC API Differences From C API
Sharing Driver Sessions Between Clients
C API Docs
NI-DAQmx
- gRPC API Differences From C API
- Task Configuration And Control
- Channel Configuration And Creation
- Timing
- Triggering
- Read Functions
- Write Functions
- Export Hardware Signals
- Scale Configuration
- Internal Buffer Configuration
- Advanced Functions
- System Configuration
- Error Handling
- Buffer Attributes
- Calibration Info Attributes
- Channel Attributes
- Device Attributes
- Export Signal Attributes
- Persisted Channel Attributes
- Persisted Scale Attributes
- Persisted Task Attributes
- Physical Channel Attributes
- Read Attributes
- Scale Attributes
- System Attributes
- Task Attributes
- Timing Attributes
- Trigger Attributes
- Watchdog Attributes
- Write Attributes
NI-DCPOWER
- Setup Functions
- Configure Functions
- Measurement Functions
- Control Functions
- Trigger And Event
- Attribute Functions
- Query Functions
- Calibration Functions
- Utility Functions
- Supported Device
- Source Attributes
- Transient Attributes
- Voltage Attributes
- Current Attributes
- Pulse Voltage Attributes
- Pulse Current Attributes
- Cutoff Attributes
- Measurement Attributes
- Trigger Attributes Functions
- Event Attributes
- Advanced Attributes
- Inherent Ivi Attributes
- Supported Device Attributes
NI-DIGITAL PATTERN DRIVER
- Init And Close Functions
- Session Locking Functions
- Utility Functions
- Error Handling Functions
- Calibration Functions
- Attributes Functions
- Pin Map Functions
- Low Level Functions
- Low Level Action Functions
- Pin Control Functions
- Static IO Functions
- Clock Generator Functions
- Levels And Timing Functions
- TDR Functions
- PPMU Configuration Functions
- DC Voltage Functions
- DC Current Functions
- PPMU Action Functions
- Pattern Configuration Functions
- Pattern Action Functions
- History Ram Functions
- Source Memory Functions
- Capture Memory Functions
- Triggers And Events Functions
- Conditional Jump Trigger Functions
- Sequencer Flag Functions
- Sequencer Register Functions
- Match Fail Combination Functions
- Pattern Results Functions
- Sort Results Functions
- Frequency Measurement Functions
- IVI Inherent Attributes
- Specific Driver Information Attributes, Read Only
- Driver Setup Information Attributes
- Device Attributes
- Pin Control Attributes
- Level Configuration Attributes
- Trigger Configuration Attributes
- PPMU Attributes
- Patterns Attributes
- Pattern Opcode Event Attributes
- Timing Offset Attributes
- Keep Alive Attributes
- Frequency Measurement Attributes
- Clock Generator Attributes
- History RAM
- Synchronization Attributes
- TDR Endpoint Termination Attributes
NI-FGEN
- Setup Functions
- Configuration Functions
- Standard Output Functions
- Arbitrary Waveform Output Functions
- Arbitrary Sequence Output Functions
- Incremental Waveform Write Functions
- Configure Clock Functions
- Trigger And Syncronizations Functions
- 5404 Routing Functions
- Script Output Functions
- Configure Onboard Signal Processing Functions
- Configure Peer To Peer Functions
- Attribute Functions
- Waveform Control Functions
- Error Functions
- Output Attributes
- Arbitrary Waveform Attributes
- Data Transfer Attributes
- Onboard Signal Processing Attributes
- Peer To Peer Attributes
- Standard Function Attributes
- Clock Attributes
- Event Attributes
- Triggering Attributes
- Instrument Specific Attributes
- Inherent IVI Attributes
- 5401 5411 5431
NI-RFmx Bluetooth
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attribute Functions
- Fetch Results Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- Packet Attributes
- Auto Detect Signal Attributes
- Modacc Attributes
- ACP Attributes
- Twenty dB Attributes
- Frequency Range Attributes
- TXP Attributes
- Advanced Attributes
NI-RFmx NR
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attributes Functions
- Fetch Results Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- Signal Detection Attributes
- Component Carrier Attributes
- List Attributes
- Modacc Attributes
- ACP Attributes
- CHP Attributes
- OBW Attributes
- SEM Attributes
- TXP Attributes
- Pvt Attributes
- Advanced Attributes
NI-RFmx LTE
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Ch Configuration Functions
- NB IoT Configuration Functions
- ModAcc Configuration Functions
- ACP Configuration Functions
- CHP Configuration Functions
- OBW Configuration Functions
- SEM Configuration Functions
- PVT Configuration Functions
- SlotPhase Configuration Functions
- SlotPower Configuration Functions
- Set And Get Attribute Functions
- ModAcc Fetch Functions
- ACP Fetch Functions
- CHP Fetch Functions
- OBW Fetch Functions
- SEM Fetch Functions
- PVT Fetch Functions
- SlotPhase Fetch Functions
- SlotPower Fetch Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- Component Carrier Attributes
- ModAcc Attributes
- ACP Attributes
- CHP Attributes
- OBW Attributes
- SEM Attributes
- PVT Attributes
- SlotPhase Attributes
- SlotPower Attributes
- Advanced Attributes
NI-RFmx SpecAn
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attribute Functions
- Read Functions
- Fetch Functions
- Utility Functions
- Marker Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- ACP Attributes
- Cdf Attributes
- CHP Attributes
- Fcnt Attributes
- Harm Attributes
- OBW Attributes
- SEM Attributes
- Spectrum Attributes
- Spur Attributes
- TXP Attributes
- AMPM Attributes
- Dpd Attributes
- IQ Attributes
- IM Attributes
- NF Attributes
- Phasenoise Attributes
- PAVT Attributes
- Advanced Attributes
NI-RFmx WLAN
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attribute Functions
- Fetch DSSS ModAcc Functions
- Fetch OFDM ModAcc Functions
- Fetch SEM Functions
- Fetch TXP Functions
- Fetch PowerRamp Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- OFDM Attributes
- Auto Detect Signal Attributes
- DSSS ModAcc Attributes
- OFDM ModAcc Attributes
- SEM Attributes
- TXP Attributes
- PowerRamp Attributes
- Advanced Attributes
NI-RFSA
- General Functions
- Configuration Functions
- Acquisition Functions
- Utility Functions
- Calibration Functions
- General Attributes
- Vertical Attributes
- Signal Path Attributes
- Acquisition Attributes
- Acquisition Attributes
- Triggers Attributes
- Events Attributes
- Device Characteristics Attributes
- Peer To Peer Streaming Attributes
- Configuration List Attributes
- Inherent IVI Properties Attributes
- De-embedding Attributes
- Self Calibration Attributes
- Factory Calibration Attributes
- External Alignment Attributes
- Device Specific Attributes
NI-RFSG
- General Functions
- Generation Configuration
- Utility Functions
- Calibration Functions
- Arb Attributes
- Clock Attributes
- Configuration List Attributes
- De-embedding Attributes
- Device Characteristics Attributes
- Device Specific Attributes
- Events Attributes
- External Calibration Attributes
- Inherent IVI Attributes Attributes
- IQ Impairment Attributes
- Load Configurations Attributes
- Modulation Attributes
- Obsolete Attributes
- Peer To Peer Attributes
- RF Attributes
- Self Calibration Attributes
- Triggers Attributes
NI-SCOPE
- Setup Functions
- Configure Functions
- Attribute Functions
- Acquisition Functions
- Measurement Functions
- Calibrate Functions
- Utility Funcitons
- Error Handling Functions
- IVI Compliance Or Obsolete Functions
- Vertical Attributes
- Horizontal Attributes
- Trigger Attributes
- Clocking Attributes
- Synchronization Attributes
- Acquisition Attributes
- Waveform Measurements Attributes
- Onboard Signal Processing Attributes
- Peer To Peer Streaming Attributes
- Device Attributes
- IVI Or Obsolete Attributes
- Instrument Capabilities Attributes
- If Digitizer Attributes
NI-XNET
- gRPC API differences from C APIs
- General Functions
- Cluster Properties
- Database Properties
- Device Properties
- ECU Properties
- Frame Properties
- Interface Properties
- LIN Schedule Entry Properties
- LIN Schedule Properties
- PDU Properties
- Session Ethernet Properties
- Session Frame Properties
- Session Interface Properties
- Session Properties
- Session SAE J1939 Properties
- Signal Properties
- Subframe Properties
- System Properties
- IP-Stack Functions
- Socket Options
- Socket Functions