This repository has been archived by the owner on Feb 6, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy path.travis.yml
73 lines (64 loc) · 2.82 KB
/
.travis.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
language: python
os: linux
python: "2.7"
before_install:
- sudo add-apt-repository -y ppa:ubuntu-toolchain-r/test
- sudo apt-get -qq update
- wget http://sourceforge.net/projects/boost/files/boost/1.55.0/boost_1_55_0.tar.bz2
- tar --bzip2 -xf boost_1_55_0.tar.bz2
- cd boost_1_55_0
- ./bootstrap.sh --help
- sudo ./bootstrap.sh --with-libraries="atomic"
# Way too much output, so just display the last 50 lines.
- sudo ./b2 install | tail -n 50
- cd ..
# configuration for python interface
# install mini anaconda
- wget https://repo.continuum.io/miniconda/Miniconda-latest-Linux-x86_64.sh -O miniconda.sh
- bash miniconda.sh -b -p $HOME/miniconda
- export PATH="$HOME/miniconda/bin:$PATH"
- hash -r
- conda config --set always_yes yes --set changeps1 no
- conda update -q conda
# Useful for debugging any issues with conda
- conda info -a
# Replace dep1 dep2 ... with your dependencies
- conda install python=$TRAVIS_PYTHON_VERSION numpy matplotlib h5py
install:
- sudo apt-get install -y libfftw3-dev cmake
- sudo apt-get install -y python-numpy python-matplotlib python-h5py libboost-python-dev
- sudo apt-get install -qq g++-4.8
- sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-4.8 50
# install Boost.Numpy for python interface
- cd python; git clone https://github.com/ndarray/Boost.NumPy.git
- cd Boost.NumPy; cmake ./
- make -j 8
- sudo make install
- cd ../../
- export LD_LIBRARY_PATH=$LD_LIBRARY:/usr/local/lib64
script:
# make znn binary
- make --jobs=3 --keep-going
- make clean
# make python core
- cd python/core/; make --jobs=3 --keep-going; cd ../../
# check patch using single precision, this check will create the net_current.h5 file for testing loading
- cd python
# test affinity training patch, network initialization, network with even field of view
- python train.py -c ../testsuit/affinity/config.cfg -d single -k yes
# test boundary map training, patch matching, network initialization
- python train.py -c ../testsuit/boundary/config.cfg -d single -k yes
# second check to test the network loading
- python train.py -c ../testsuit/boundary/config.cfg -d single -k yes
# check the double precision
# compile the core with double precision
- cd core; make double -j 4
# return to `python`
- cd ..
- python train.py -c ../testsuit/boundary/config.cfg -d double -k yes
# test forward pass
- python forward.py -c ../testsuit/forward/config.cfg
# return to root directory
- cd ..
notifications:
email: false