Examine the performance of the YOLOv5 algorithm in detecting and recognizing Tom, Jerry, and Spike.
Model | Input Size | Batch Size | Dataset Size | Val [email protected] | Test [email protected] |
---|---|---|---|---|---|
Nano | 640x640 | 16 | 25% | 0.964 | 0.989 |
Nano | 640x640 | 16 | 50% | 0.969 | 0.953 |
Nano | 640x640 | 16 | 75% | 0.989 | 0.982 |
Nano | 640x640 | 16 | 100% | 0.989 | 0.977 |
Small | 640x640 | 16 | 25% | 0.989 | 0.921 |
Small | 640x640 | 16 | 50% | 0.983 | 0.935 |
Small | 640x640 | 16 | 75% | 0.977 | 0.98 |
Small | 640x640 | 16 | 100% | 0.98 | 0.985 |
Medium | 640x640 | 16 | 25% | 0.946 | 0.914 |
Medium | 640x640 | 16 | 50% | 0.984 | 0.982 |
Medium | 640x640 | 16 | 75% | 0.971 | 0.992 |
Medium | 640x640 | 16 | 100% | 0.983 | 0.986 |
- Images: 1000
- Has an object: 931
- No object: 69
- Object Instances:
- Tom: 562
- Spike: 538
- Jerry: 490
- Split Ratio:
- Train: 70%
- Validation: 21%
- Test: 9%
- CPU: AMD Ryzen 9 5900X
- Memory: G.Skill Trident Z 32GB @ 3600 Mhz
- GPU: EVGA GeForce RTX 3060
- Storage: Western Digital 1TB WD Blue
This project is licensed under the MIT License - see the LICENSE.md file for details
Special thank to
- Best-README-Template - the readme template.