-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
100 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
import networkx as nx | ||
import pandas as pd | ||
from geopandas import GeoDataFrame, GeoSeries | ||
from networkx.utils import pairwise | ||
from shapely.errors import GEOSException | ||
from shapely.geometry import Point | ||
|
||
from ..geopandas_tools.conversion import to_geoseries | ||
from ..geopandas_tools.neighbors import get_all_distances | ||
|
||
|
||
def traveling_salesman_problem( | ||
points: GeoDataFrame | GeoSeries, | ||
distances: pd.DataFrame | None = None, | ||
return_to_start: bool = True, | ||
) -> list[Point]: | ||
points = to_geoseries(points).drop_duplicates() | ||
|
||
if len(points) <= 2: | ||
return list(points.dropna()) | ||
|
||
if distances is None: | ||
idx_to_point: dict[int, Point] = dict(enumerate(points)) | ||
points.index = range(len(points)) | ||
distances: pd.DataFrame = get_all_distances(points, points) | ||
else: | ||
idx_to_point: dict[int, Point] = dict(enumerate(points)) | ||
|
||
distances = distances.loc[ | ||
lambda x: (x.index.isin(points.index)) | ||
& (x["neighbor_index"].isin(points.index)) | ||
] | ||
|
||
if not return_to_start: | ||
distances["mean_distance"] = distances.groupby(level=0)["distance"].transform( | ||
"mean" | ||
) | ||
|
||
distances = distances.sort_values( | ||
["mean_distance", "distance"], ascending=[True, False] | ||
) | ||
max_dist_idx = distances["mean_distance"].idxmax() | ||
|
||
dummy_node_idx = points.index.max() + 1 | ||
n_points = dummy_node_idx + 1 | ||
max_dist_and_some = distances["distance"].max() * 1.1 | ||
dummy_node = pd.DataFrame( | ||
{ | ||
"neighbor_index": [i for i in range(n_points)] | ||
+ [dummy_node_idx] * dummy_node_idx, | ||
"distance": [max_dist_and_some for _ in range(n_points * 2 - 1)], | ||
}, | ||
index=[dummy_node_idx] * (n_points) + [i for i in range(dummy_node_idx)], | ||
) | ||
|
||
dummy_node.loc[ | ||
(dummy_node["neighbor_index"] == max_dist_idx) | ||
| (dummy_node.index == max_dist_idx) | ||
| (dummy_node["neighbor_index"] == dummy_node.index), | ||
"distance", | ||
] = 0 | ||
|
||
distances = pd.concat([distances, dummy_node]) | ||
else: | ||
n_points = points.index.max() | ||
|
||
# now to mimick the return values of nx.all_pairs_dijkstra, nested dictionaries of distances and nodes/edges | ||
dist, path = {}, {} | ||
for i in distances.index.unique(): | ||
dist[i] = dict(distances.loc[i, ["neighbor_index", "distance"]].values) | ||
path[i] = { | ||
neighbor: [i, neighbor] for neighbor in distances.loc[i, "neighbor_index"] | ||
} | ||
|
||
# the rest of the function is copied from networkx' traveling_salesman_problem | ||
|
||
nx_graph = nx.Graph() | ||
for u in range(n_points): | ||
for v in range(n_points): | ||
if u == v: | ||
continue | ||
nx_graph.add_edge(u, v, weight=dist[u][v]) | ||
best = nx.approximation.christofides(nx_graph, "weight") | ||
|
||
best_path = [] | ||
for u, v in pairwise(best): | ||
best_path.extend(path[u][v][:-1]) | ||
best_path.append(v) | ||
|
||
if return_to_start: | ||
return [idx_to_point[i] for i in best_path] | ||
|
||
# drop duplicates, but keep order | ||
best_path = list(dict.fromkeys(best_path)) | ||
|
||
idx_start = best_path.index(dummy_node_idx) # - 1 | ||
|
||
best_path = best_path[idx_start:] + best_path[:idx_start] | ||
|
||
return [idx_to_point[i] for i in best_path if i != dummy_node_idx] |