Skip to content

Commit

Permalink
Auto-generated commit
Browse files Browse the repository at this point in the history
  • Loading branch information
stdlib-bot committed Nov 10, 2023
1 parent 6b84731 commit ef14ef7
Show file tree
Hide file tree
Showing 4 changed files with 6 additions and 6 deletions.
4 changes: 2 additions & 2 deletions data/data.csv
Original file line number Diff line number Diff line change
Expand Up @@ -802,14 +802,14 @@ base.dists.weibull.skewness,"\nbase.dists.weibull.skewness( k, λ )\n Returns
base.dists.weibull.stdev,"\nbase.dists.weibull.stdev( k, λ )\n Returns the standard deviation of a Weibull distribution.\n\n If `k <= 0` or `λ <= 0`, the function returns `NaN`.\n\n If `k` or `λ` is `NaN`, the function returns `NaN`.\n\n Parameters\n ----------\n k: number\n Shape parameter.\n\n λ: number\n Scale parameter.\n\n Returns\n -------\n out: number\n Standard deviation.\n\n Examples\n --------\n > var v = base.dists.weibull.stdev( 1.0, 1.0 )\n 1.0\n > v = base.dists.weibull.stdev( 4.0, 12.0 )\n ~3.051\n > v = base.dists.weibull.stdev( 8.0, 2.0 )\n ~0.279\n\n"
base.dists.weibull.variance,"\nbase.dists.weibull.variance( k, λ )\n Returns the variance of a Weibull distribution.\n\n If `k <= 0` or `λ <= 0`, the function returns `NaN`.\n\n If `k` or `λ` is `NaN`, the function returns `NaN`.\n\n Parameters\n ----------\n k: number\n Shape parameter.\n\n λ: number\n Scale parameter.\n\n Returns\n -------\n out: number\n Variance.\n\n Examples\n --------\n > var v = base.dists.weibull.variance( 1.0, 1.0 )\n 1.0\n > v = base.dists.weibull.variance( 4.0, 12.0 )\n ~9.311\n > v = base.dists.weibull.variance( 8.0, 2.0 )\n ~0.078\n\n"
base.dists.weibull.Weibull,"\nbase.dists.weibull.Weibull( [k, λ] )\n Returns a Weibull distribution object.\n\n Parameters\n ----------\n k: number (optional)\n Shape parameter. Must be greater than `0`. Default: `1.0`.\n\n λ: number (optional)\n Scale parameter. Must be greater than `0`. Default: `1.0`.\n\n Returns\n -------\n weibull: Object\n Distribution instance.\n\n weibull.k: number\n Shape parameter. If set, the value must be greater than `0`.\n\n weibull.lambda: number\n Scale parameter. If set, the value must be greater than `0`.\n\n weibull.entropy: number\n Read-only property which returns the differential entropy.\n\n weibull.kurtosis: number\n Read-only property which returns the excess kurtosis.\n\n weibull.mean: number\n Read-only property which returns the expected value.\n\n weibull.median: number\n Read-only property which returns the median.\n\n weibull.mode: number\n Read-only property which returns the mode.\n\n weibull.skewness: number\n Read-only property which returns the skewness.\n\n weibull.stdev: number\n Read-only property which returns the standard deviation.\n\n weibull.variance: number\n Read-only property which returns the variance.\n\n weibull.cdf: Function\n Evaluates the cumulative distribution function (CDF).\n\n weibull.logcdf: Function\n Evaluates the natural logarithm of the cumulative distribution function\n (CDF).\n\n weibull.logpdf: Function\n Evaluates the natural logarithm of the probability density function\n (PDF).\n\n weibull.mgf: Function\n Evaluates the moment-generating function (MGF).\n\n weibull.pdf: Function\n Evaluates the probability density function (PDF).\n\n weibull.quantile: Function\n Evaluates the quantile function at probability `p`.\n\n Examples\n --------\n > var weibull = base.dists.weibull.Weibull( 6.0, 5.0 );\n > weibull.k\n 6.0\n > weibull.lambda\n 5.0\n > weibull.entropy\n ~1.299\n > weibull.kurtosis\n ~0.035\n > weibull.mean\n ~4.639\n > weibull.median\n ~4.704\n > weibull.mode\n ~4.85\n > weibull.skewness\n ~-0.373\n > weibull.stdev\n ~0.899\n > weibull.variance\n ~0.808\n > weibull.cdf( 3.0 )\n ~0.046\n > weibull.logcdf( 3.0 )\n ~-3.088\n > weibull.logpdf( 1.0 )\n ~-7.865\n > weibull.mgf( -0.5 )\n ~0.075\n > weibull.pdf( 3.0 )\n ~0.089\n > weibull.quantile( 0.8 )\n ~5.413\n\n"
base.ellipe,"\nbase.ellipe( m )\n Computes the complete elliptic integral of the second kind.\n\n Parameters\n ----------\n m: number\n Input value.\n\n Returns\n -------\n y: number\n Function value.\n\n Examples\n --------\n > var y = base.ellipe( 0.5 )\n ~1.351\n > y = base.ellipe( -1.0 )\n ~1.910\n > y = base.ellipe( 2.0 )\n NaN\n > y = base.ellipe( PINF )\n NaN\n > y = base.ellipe( NINF )\n NaN\n > y = base.ellipe( NaN )\n NaN\n\n See Also\n --------\n base.ellipk\n"
base.ellipe,"\nbase.ellipe( m )\n Computes the complete elliptic integral of the second kind.\n\n Parameters\n ----------\n m: number\n Input value.\n\n Returns\n -------\n y: number\n Function value.\n\n Examples\n --------\n > var y = base.ellipe( 0.5 )\n ~1.351\n > y = base.ellipe( -1.0 )\n ~1.910\n > y = base.ellipe( 2.0 )\n NaN\n > y = base.ellipe( PINF )\n NaN\n > y = base.ellipe( NINF )\n NaN\n > y = base.ellipe( NaN )\n NaN\n\n See Also\n --------\n base.ellipj, base.ellipk\n"
base.ellipj,"\nbase.ellipj( u, m )\n Computes the Jacobi elliptic functions sn, cn, and dn and Jacobi\n amplitude am.\n\n Parameters\n ----------\n u: number\n Input value.\n\n m: number\n Modulus m, equivalent to k².\n\n Returns\n -------\n out: Array\n Jacobi elliptic functions and Jacobi amplitude.\n\n Examples\n --------\n > var v = base.ellipj( 0.3, 0.5 )\n [ ~0.293, ~0.956, ~0.978, ~0.298 ]\n > v = base.ellipj( 0.0, 0.0 )\n [ ~0.0, ~1.0, ~1.0, ~0.0 ]\n > v = base.ellipj( Infinity, 1.0 )\n [ ~1.0, ~0.0, ~0.0, ~1.571 ]\n > v = base.ellipj( 0.0, -2.0)\n [ ~0.0, ~1.0, ~1.0, NaN ]\n > v = base.ellipj( NaN, NaN )\n [ NaN, NaN, NaN, NaN ]\n\n\nbase.ellipj.assign( u, m, out, stride, offset )\n Computes the Jacobi elliptic functions sn, cn, and dn and Jacobi\n amplitude am and assigns results to a provided output array.\n\n Parameters\n ----------\n u: number\n Input value.\n\n m: number\n Modulus m, equivalent to k².\n\n out: Array|TypedArray|Object\n Output array.\n\n stride: integer\n Output array stride.\n\n offset: integer\n Output array index offset.\n\n Returns\n -------\n out: Array|TypedArray|Object\n Jacobi elliptic functions and Jacobi amplitude.\n\n Examples\n --------\n > var out = new Float64Array( 4 );\n > var v = base.ellipj.assign( 0.3, 0.5, out, 1, 0 )\n <Float64Array>[ ~0.293, ~0.956, ~0.978, ~0.298 ]\n > var bool = ( v === out )\n true\n\n\nbase.ellipj.sn( u, m )\n Computes the Jacobi elliptic function sn.\n\n Parameters\n ----------\n u: number\n Input value.\n\n m: number\n Modulus m, equivalent to k².\n\n Returns\n -------\n out: number\n Jacobi elliptic function sn.\n\n Examples\n --------\n > var v = base.ellipj.sn( 0.3, 0.5 )\n ~0.293\n\n\nbase.ellipj.cn( u, m )\n Computes the Jacobi elliptic functions cn.\n\n Parameters\n ----------\n u: number\n Input value.\n\n m: number\n Modulus m, equivalent to k².\n\n Returns\n -------\n out: number\n Jacobi elliptic function cn.\n\n Examples\n --------\n > var v = base.ellipj.cn( 0.3, 0.5 )\n ~0.956\n\n\nbase.ellipj.dn( u, m )\n Computes the Jacobi elliptic function dn.\n\n Parameters\n ----------\n u: number\n Input value.\n\n m: number\n Modulus m, equivalent to k².\n\n Returns\n -------\n out: number\n Jacobi elliptic function dn.\n\n Examples\n --------\n > var v = base.ellipj.dn( 0.3, 0.5 )\n ~0.978\n\n\nbase.ellipj.am( u, m )\n Computes the Jacobi amplitude am.\n\n Parameters\n ----------\n u: number\n Input value.\n\n m: number\n Modulus m, equivalent to k².\n\n Returns\n -------\n out: number\n Jacobi elliptic function am.\n\n Examples\n --------\n > var v = base.ellipj.am( 0.3, 0.5 )\n ~0.298\n\n See Also\n --------\n base.ellipe, base.ellipk"
base.ellipj.assign,"\nbase.ellipj.assign( u, m, out, stride, offset )\n Computes the Jacobi elliptic functions sn, cn, and dn and Jacobi\n amplitude am and assigns results to a provided output array.\n\n Parameters\n ----------\n u: number\n Input value.\n\n m: number\n Modulus m, equivalent to k².\n\n out: Array|TypedArray|Object\n Output array.\n\n stride: integer\n Output array stride.\n\n offset: integer\n Output array index offset.\n\n Returns\n -------\n out: Array|TypedArray|Object\n Jacobi elliptic functions and Jacobi amplitude.\n\n Examples\n --------\n > var out = new Float64Array( 4 );\n > var v = base.ellipj.assign( 0.3, 0.5, out, 1, 0 )\n <Float64Array>[ ~0.293, ~0.956, ~0.978, ~0.298 ]\n > var bool = ( v === out )\n true"
base.ellipj.sn,"\nbase.ellipj.sn( u, m )\n Computes the Jacobi elliptic function sn.\n\n Parameters\n ----------\n u: number\n Input value.\n\n m: number\n Modulus m, equivalent to k².\n\n Returns\n -------\n out: number\n Jacobi elliptic function sn.\n\n Examples\n --------\n > var v = base.ellipj.sn( 0.3, 0.5 )\n ~0.293"
base.ellipj.cn,"\nbase.ellipj.cn( u, m )\n Computes the Jacobi elliptic functions cn.\n\n Parameters\n ----------\n u: number\n Input value.\n\n m: number\n Modulus m, equivalent to k².\n\n Returns\n -------\n out: number\n Jacobi elliptic function cn.\n\n Examples\n --------\n > var v = base.ellipj.cn( 0.3, 0.5 )\n ~0.956"
base.ellipj.dn,"\nbase.ellipj.dn( u, m )\n Computes the Jacobi elliptic function dn.\n\n Parameters\n ----------\n u: number\n Input value.\n\n m: number\n Modulus m, equivalent to k².\n\n Returns\n -------\n out: number\n Jacobi elliptic function dn.\n\n Examples\n --------\n > var v = base.ellipj.dn( 0.3, 0.5 )\n ~0.978"
base.ellipj.am,"\nbase.ellipj.am( u, m )\n Computes the Jacobi amplitude am.\n\n Parameters\n ----------\n u: number\n Input value.\n\n m: number\n Modulus m, equivalent to k².\n\n Returns\n -------\n out: number\n Jacobi elliptic function am.\n\n Examples\n --------\n > var v = base.ellipj.am( 0.3, 0.5 )\n ~0.298\n\n See Also\n --------\n base.ellipe, base.ellipk"
base.ellipk,"\nbase.ellipk( m )\n Computes the complete elliptic integral of the first kind.\n\n Parameters\n ----------\n m: number\n Input value.\n\n Returns\n -------\n y: number\n Function value.\n\n Examples\n --------\n > var y = base.ellipk( 0.5 )\n ~1.854\n > y = base.ellipk( -1.0 )\n ~1.311\n > y = base.ellipk( 2.0 )\n NaN\n > y = base.ellipk( PINF )\n NaN\n > y = base.ellipk( NINF )\n NaN\n > y = base.ellipk( NaN )\n NaN\n\n See Also\n --------\n base.ellipe\n"
base.ellipk,"\nbase.ellipk( m )\n Computes the complete elliptic integral of the first kind.\n\n Parameters\n ----------\n m: number\n Input value.\n\n Returns\n -------\n y: number\n Function value.\n\n Examples\n --------\n > var y = base.ellipk( 0.5 )\n ~1.854\n > y = base.ellipk( -1.0 )\n ~1.311\n > y = base.ellipk( 2.0 )\n NaN\n > y = base.ellipk( PINF )\n NaN\n > y = base.ellipk( NINF )\n NaN\n > y = base.ellipk( NaN )\n NaN\n\n See Also\n --------\n base.ellipe, base.ellipj\n"
base.epsdiff,"\nbase.epsdiff( x, y[, scale] )\n Computes the relative difference of two real numbers in units of double-\n precision floating-point epsilon.\n\n By default, the function scales the absolute difference by dividing the\n absolute difference by the maximum absolute value of `x` and `y`. To scale\n by a different function, specify a scale function name.\n\n The following `scale` functions are supported:\n\n - 'max-abs': maximum absolute value of `x` and `y` (default).\n - 'max': maximum value of `x` and `y`.\n - 'min-abs': minimum absolute value of `x` and `y`.\n - 'min': minimum value of `x` and `y`.\n - 'mean-abs': arithmetic mean of the absolute values of `x` and `y`.\n - 'mean': arithmetic mean of `x` and `y`.\n - 'x': `x` (*noncommutative*).\n - 'y': `y` (*noncommutative*).\n\n To use a custom scale function, provide a function which accepts two numeric\n arguments `x` and `y`.\n\n If computing the relative difference in units of epsilon will result in\n overflow, the function returns the maximum double-precision floating-point\n number.\n\n If the absolute difference of `x` and `y` is `0`, the relative difference is\n always `0`.\n\n If `|x| = |y| = infinity`, the function returns `NaN`.\n\n If `|x| = |-y| = infinity`, the relative difference is `+infinity`.\n\n If a `scale` function returns `0`, the function returns `NaN`.\n\n Parameters\n ----------\n x: number\n First number.\n\n y: number\n Second number.\n\n scale: string|Function (optional)\n Scale function. Default: `'max-abs'`.\n\n Returns\n -------\n out: number\n Relative difference in units of double-precision floating-point epsilon.\n\n Examples\n --------\n > var d = base.epsdiff( 12.15, 12.149999999999999 )\n ~0.658\n > d = base.epsdiff( 2.4341309458983933, 2.4341309458633909, 'mean-abs' )\n ~64761.512\n\n // Custom scale function:\n > function scale( x, y ) { return ( x > y ) ? y : x; };\n > d = base.epsdiff( 1.0000000000000002, 1.0000000000000100, scale )\n ~44\n\n See Also\n --------\n base.absdiff, base.reldiff\n"
base.erf,"\nbase.erf( x )\n Evaluates the error function.\n\n If provided `NaN`, the function returns `NaN`.\n\n As the error function is an odd function (i.e., `erf(-x) == -erf(x)`), if\n provided `-0`, the function returns `-0`.\n\n Parameters\n ----------\n x: number\n Input value.\n\n Returns\n -------\n y: number\n Function value.\n\n Examples\n --------\n > var y = base.erf( 2.0 )\n ~0.9953\n > y = base.erf( -1.0 )\n ~-0.8427\n > y = base.erf( -0.0 )\n -0.0\n > y = base.erf( NaN )\n NaN\n\n See Also\n --------\n base.erfc, base.erfinv, base.erfcinv\n"
base.erfc,"\nbase.erfc( x )\n Evaluates the complementary error function.\n\n If provided `NaN`, the function returns `NaN`.\n\n Parameters\n ----------\n x: number\n Input value.\n\n Returns\n -------\n y: number\n Function value.\n\n Examples\n --------\n > var y = base.erfc( 2.0 )\n ~0.0047\n > y = base.erfc( -1.0 )\n ~1.8427\n > y = base.erfc( 0.0 )\n 1.0\n > y = base.erfc( PINF )\n 0.0\n > y = base.erfc( NINF )\n 2.0\n > y = base.erfc( NaN )\n NaN\n\n See Also\n --------\n base.erf, base.erfinv, base.erfcinv, base.erfcx\n"
Expand Down
2 changes: 1 addition & 1 deletion data/data.json

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion dist/index.js

Large diffs are not rendered by default.

4 changes: 2 additions & 2 deletions dist/index.js.map

Large diffs are not rendered by default.

0 comments on commit ef14ef7

Please sign in to comment.