About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Base (i.e., lower-level) statistical functions.
npm install @stdlib/stats-base
Alternatively,
- To load the package in a website via a
script
tag without installation and bundlers, use the ES Module available on theesm
branch (see README). - If you are using Deno, visit the
deno
branch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umd
branch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var stats = require( '@stdlib/stats-base' );
Namespace containing "base" (i.e., lower-level) statistical functions.
var ns = stats;
// returns {...}
The namespace contains the following sub-namespaces:
dists
: base (i.e., lower-level) probability distribution modules.
The namespace contains the following statistical functions:
cumax( N, x, strideX, y, strideY )
: calculate the cumulative maximum of a strided array.cumaxabs( N, x, strideX, y, strideY )
: calculate the cumulative maximum absolute value of a strided array.cumin( N, x, strideX, y, strideY )
: calculate the cumulative minimum of a strided array.cuminabs( N, x, strideX, y, strideY )
: calculate the cumulative minimum absolute value of a strided array.dcumax( N, x, strideX, y, strideY )
: calculate the cumulative maximum of double-precision floating-point strided array elements.dcumaxabs( N, x, strideX, y, strideY )
: calculate the cumulative maximum absolute value of double-precision floating-point strided array elements.dcumin( N, x, strideX, y, strideY )
: calculate the cumulative minimum of double-precision floating-point strided array elements.dcuminabs( N, x, strideX, y, strideY )
: calculate the cumulative minimum absolute value of double-precision floating-point strided array elements.dmax( N, x, strideX )
: calculate the maximum value of a double-precision floating-point strided array.dmaxabs( N, x, strideX )
: calculate the maximum absolute value of a double-precision floating-point strided array.dmaxabssorted( N, x, strideX )
: calculate the maximum absolute value of a sorted double-precision floating-point strided array.dmaxsorted( N, x, strideX )
: calculate the maximum value of a sorted double-precision floating-point strided array.dmean( N, x, stride )
: calculate the arithmetic mean of a double-precision floating-point strided array.dmeankbn( N, x, stride )
: calculate the arithmetic mean of a double-precision floating-point strided array using an improved Kahan–Babuška algorithm.dmeankbn2( N, x, stride )
: calculate the arithmetic mean of a double-precision floating-point strided array using a second-order iterative Kahan–Babuška algorithm.dmeanli( N, x, stride )
: calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm.dmeanlipw( N, x, stride )
: calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation.dmeanors( N, x, stride )
: calculate the arithmetic mean of a double-precision floating-point strided array using ordinary recursive summation.dmeanpn( N, x, stride )
: calculate the arithmetic mean of a double-precision floating-point strided array using a two-pass error correction algorithm.dmeanpw( N, x, stride )
: calculate the arithmetic mean of a double-precision floating-point strided array using pairwise summation.dmeanstdev( N, correction, x, strideX, out, strideOut )
: calculate the mean and standard deviation of a double-precision floating-point strided array.dmeanstdevpn( N, correction, x, strideX, out, strideOut )
: calculate the mean and standard deviation of a double-precision floating-point strided array using a two-pass algorithm.dmeanvar( N, correction, x, strideX, out, strideOut )
: calculate the mean and variance of a double-precision floating-point strided array.dmeanvarpn( N, correction, x, strideX, out, strideOut )
: calculate the mean and variance of a double-precision floating-point strided array using a two-pass algorithm.dmeanwd( N, x, strideX )
: calculate the arithmetic mean of a double-precision floating-point strided array using Welford's algorithm.dmediansorted( N, x, strideX )
: calculate the median value of a sorted double-precision floating-point strided array.dmidrange( N, x, strideX )
: calculate the mid-range of a double-precision floating-point strided array.dmin( N, x, strideX )
: calculate the minimum value of a double-precision floating-point strided array.dminabs( N, x, strideX )
: calculate the minimum absolute value of a double-precision floating-point strided array.dminsorted( N, x, strideX )
: calculate the minimum value of a sorted double-precision floating-point strided array.dmskmax( N, x, strideX, mask, strideMask )
: calculate the maximum value of a double-precision floating-point strided array according to a mask.dmskmin( N, x, strideX, mask, strideMask )
: calculate the minimum value of a double-precision floating-point strided array according to a mask.dmskrange( N, x, strideX, mask, strideMask )
: calculate the range of a double-precision floating-point strided array according to a mask.dnanmax( N, x, strideX )
: calculate the maximum value of a double-precision floating-point strided array, ignoringNaN
values.dnanmaxabs( N, x, strideX )
: calculate the maximum absolute value of a double-precision floating-point strided array, ignoringNaN
values.dnanmean( N, x, stride )
: calculate the arithmetic mean of a double-precision floating-point strided array, ignoringNaN
values.dnanmeanors( N, x, stride )
: calculate the arithmetic mean of a double-precision floating-point strided array, ignoringNaN
values and using ordinary recursive summation.dnanmeanpn( N, x, stride )
: calculate the arithmetic mean of a double-precision floating-point strided array, ignoringNaN
values and using a two-pass error correction algorithm.dnanmeanpw( N, x, stride )
: calculate the arithmetic mean of a double-precision floating-point strided array, ignoringNaN
values and using pairwise summation.dnanmeanwd( N, x, strideX )
: calculate the arithmetic mean of a double-precision floating-point strided array, using Welford's algorithm and ignoringNaN
values.dnanmin( N, x, strideX )
: calculate the minimum value of a double-precision floating-point strided array, ignoringNaN
values.dnanminabs( N, x, strideX )
: calculate the minimum absolute value of a double-precision floating-point strided array, ignoringNaN
values.dnanmskmax( N, x, strideX, mask, strideMask )
: calculate the maximum value of a double-precision floating-point strided array according to a mask, ignoringNaN
values.dnanmskmin( N, x, strideX, mask, strideMask )
: calculate the minimum value of a double-precision floating-point strided array according to a mask, ignoringNaN
values.dnanmskrange( N, x, strideX, mask, strideMask )
: calculate the range of a double-precision floating-point strided array according to a mask, ignoringNaN
values.dnanrange( N, x, strideX )
: calculate the range of a double-precision floating-point strided array, ignoringNaN
values.dnanstdev( N, correction, x, stride )
: calculate the standard deviation of a double-precision floating-point strided array ignoringNaN
values.dnanstdevch( N, correction, x, stride )
: calculate the standard deviation of a double-precision floating-point strided array ignoringNaN
values and using a one-pass trial mean algorithm.dnanstdevpn( N, correction, x, stride )
: calculate the standard deviation of a double-precision floating-point strided array ignoringNaN
values and using a two-pass algorithm.dnanstdevtk( N, correction, x, stride )
: calculate the standard deviation of a double-precision floating-point strided array ignoringNaN
values and using a one-pass textbook algorithm.dnanstdevwd( N, correction, x, stride )
: calculate the standard deviation of a double-precision floating-point strided array ignoringNaN
values and using Welford's algorithm.dnanstdevyc( N, correction, x, stride )
: calculate the standard deviation of a double-precision floating-point strided array ignoringNaN
values and using a one-pass algorithm proposed by Youngs and Cramer.dnanvariance( N, correction, x, stride )
: calculate the variance of a double-precision floating-point strided array ignoringNaN
values.dnanvariancech( N, correction, x, stride )
: calculate the variance of a double-precision floating-point strided array ignoringNaN
values and using a one-pass trial mean algorithm.dnanvariancepn( N, correction, x, stride )
: calculate the variance of a double-precision floating-point strided array ignoringNaN
values and using a two-pass algorithm.dnanvariancetk( N, correction, x, stride )
: calculate the variance of a double-precision floating-point strided array ignoringNaN
values and using a one-pass textbook algorithm.dnanvariancewd( N, correction, x, stride )
: calculate the variance of a double-precision floating-point strided array ignoringNaN
values and using Welford's algorithm.dnanvarianceyc( N, correction, x, stride )
: calculate the variance of a double-precision floating-point strided array ignoringNaN
values and using a one-pass algorithm proposed by Youngs and Cramer.drange( N, x, strideX )
: calculate the range of a double-precision floating-point strided array.dsem( N, correction, x, stride )
: calculate the standard error of the mean of a double-precision floating-point strided array.dsemch( N, correction, x, stride )
: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass trial mean algorithm.dsempn( N, correction, x, stride )
: calculate the standard error of the mean of a double-precision floating-point strided array using a two-pass algorithm.dsemtk( N, correction, x, stride )
: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass textbook algorithm.dsemwd( N, correction, x, strideX )
: calculate the standard error of the mean of a double-precision floating-point strided array using Welford's algorithm.dsemyc( N, correction, x, stride )
: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.dsmean( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array using extended accumulation and returning an extended precision result.dsmeanors( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation with extended accumulation and returning an extended precision result.dsmeanpn( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm with extended accumulation and returning an extended precision result.dsmeanpw( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array using pairwise summation with extended accumulation and returning an extended precision result.dsmeanwd( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm with extended accumulation and returning an extended precision result.dsnanmean( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaN
values, using extended accumulation, and returning an extended precision result.dsnanmeanors( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaN
values, using ordinary recursive summation with extended accumulation, and returning an extended precision result.dsnanmeanpn( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaN
values, using a two-pass error correction algorithm with extended accumulation, and returning an extended precision result.dsnanmeanwd( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaN
values, using Welford's algorithm with extended accumulation, and returning an extended precision result.dstdev( N, correction, x, stride )
: calculate the standard deviation of a double-precision floating-point strided array.dstdevch( N, correction, x, strideX )
: calculate the standard deviation of a double-precision floating-point strided array using a one-pass trial mean algorithm.dstdevpn( N, correction, x, stride )
: calculate the standard deviation of a double-precision floating-point strided array using a two-pass algorithm.dstdevtk( N, correction, x, strideX )
: calculate the standard deviation of a double-precision floating-point strided array using a one-pass textbook algorithm.dstdevwd( N, correction, x, strideX )
: calculate the standard deviation of a double-precision floating-point strided array using Welford's algorithm.dstdevyc( N, correction, x, strideX )
: calculate the standard deviation of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.dsvariance( N, correction, x, stride )
: calculate the variance of a single-precision floating-point strided array using extended accumulation and returning an extended precision result.dsvariancepn( N, correction, x, stride )
: calculate the variance of a single-precision floating-point strided array using a two-pass algorithm with extended accumulation and returning an extended precision result.dvariance( N, correction, x, stride )
: calculate the variance of a double-precision floating-point strided array.dvariancech( N, correction, x, strideX )
: calculate the variance of a double-precision floating-point strided array using a one-pass trial mean algorithm.dvariancepn( N, correction, x, stride )
: calculate the variance of a double-precision floating-point strided array using a two-pass algorithm.dvariancetk( N, correction, x, strideX )
: calculate the variance of a double-precision floating-point strided array using a one-pass textbook algorithm.dvariancewd( N, correction, x, strideX )
: calculate the variance of a double-precision floating-point strided array using Welford's algorithm.dvarianceyc( N, correction, x, strideX )
: calculate the variance of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.dvarm( N, mean, correction, x, stride )
: calculate the variance of a double-precision floating-point strided array provided a known mean.dvarmpn( N, mean, correction, x, stride )
: calculate the variance of a double-precision floating-point strided array provided a known mean and using Neely's correction algorithm.dvarmtk( N, mean, correction, x, strideX )
: calculate the variance of a double-precision floating-point strided array provided a known mean and using a one-pass textbook algorithm.maxBy( N, x, stride, clbk[, thisArg] )
: calculate the maximum value of a strided array via a callback function.max( N, x, stride )
: calculate the maximum value of a strided array.maxabs( N, x, stride )
: calculate the maximum absolute value of a strided array.maxsorted( N, x, stride )
: calculate the maximum value of a sorted strided array.mean( N, x, stride )
: calculate the arithmetic mean of a strided array.meankbn( N, x, stride )
: calculate the arithmetic mean of a strided array using an improved Kahan–Babuška algorithm.meankbn2( N, x, stride )
: calculate the arithmetic mean of a strided array using a second-order iterative Kahan–Babuška algorithm.meanors( N, x, stride )
: calculate the arithmetic mean of a strided array using ordinary recursive summation.meanpn( N, x, stride )
: calculate the arithmetic mean of a strided array using a two-pass error correction algorithm.meanpw( N, x, stride )
: calculate the arithmetic mean of a strided array using pairwise summation.meanwd( N, x, stride )
: calculate the arithmetic mean of a strided array using Welford's algorithm.mediansorted( N, x, stride )
: calculate the median value of a sorted strided array.minBy( N, x, stride, clbk[, thisArg] )
: calculate the minimum value of a strided array via a callback function.min( N, x, stride )
: calculate the minimum value of a strided array.minabs( N, x, stride )
: calculate the minimum absolute value of a strided array.minsorted( N, x, stride )
: calculate the minimum value of a sorted strided array.mskmax( N, x, strideX, mask, strideMask )
: calculate the maximum value of a strided array according to a mask.mskmin( N, x, strideX, mask, strideMask )
: calculate the minimum value of a strided array according to a mask.mskrange( N, x, strideX, mask, strideMask )
: calculate the range of a strided array according to a mask.nanmaxBy( N, x, stride, clbk[, thisArg] )
: calculate the maximum value of a strided array via a callback function, ignoringNaN
values.nanmax( N, x, stride )
: calculate the maximum value of a strided array, ignoringNaN
values.nanmaxabs( N, x, stride )
: calculate the maximum absolute value of a strided array, ignoringNaN
values.nanmean( N, x, stride )
: calculate the arithmetic mean of a strided array, ignoringNaN
values.nanmeanors( N, x, stride )
: calculate the arithmetic mean of a strided array, ignoringNaN
values and using ordinary recursive summation.nanmeanpn( N, x, stride )
: calculate the arithmetic mean of a strided array, ignoringNaN
values and using a two-pass error correction algorithm.nanmeanwd( N, x, stride )
: calculate the arithmetic mean of a strided array, ignoringNaN
values and using Welford's algorithm.nanminBy( N, x, stride, clbk[, thisArg] )
: calculate the minimum value of a strided array via a callback function, ignoringNaN
values.nanmin( N, x, stride )
: calculate the minimum value of a strided array, ignoringNaN
values.nanminabs( N, x, stride )
: calculate the minimum absolute value of a strided array, ignoringNaN
values.nanmskmax( N, x, strideX, mask, strideMask )
: calculate the maximum value of a strided array according to a mask, ignoringNaN
values.nanmskmin( N, x, strideX, mask, strideMask )
: calculate the minimum value of a strided array according to a mask, ignoringNaN
values.nanmskrange( N, x, strideX, mask, strideMask )
: calculate the range of a strided array according to a mask, ignoringNaN
values.nanrangeBy( N, x, stride, clbk[, thisArg] )
: calculate the range of a strided array via a callback function, ignoringNaN
values.nanrange( N, x, stride )
: calculate the range of a strided array, ignoringNaN
values.nanstdev( N, correction, x, stride )
: calculate the standard deviation of a strided array ignoringNaN
values.nanstdevch( N, correction, x, stride )
: calculate the standard deviation of a strided array ignoringNaN
values and using a one-pass trial mean algorithm.nanstdevpn( N, correction, x, stride )
: calculate the standard deviation of a strided array ignoringNaN
values and using a two-pass algorithm.nanstdevtk( N, correction, x, stride )
: calculate the standard deviation of a strided array ignoringNaN
values and using a one-pass textbook algorithm.nanstdevwd( N, correction, x, stride )
: calculate the standard deviation of a strided array ignoringNaN
values and using Welford's algorithm.nanstdevyc( N, correction, x, stride )
: calculate the standard deviation of a strided array ignoringNaN
values and using a one-pass algorithm proposed by Youngs and Cramer.nanvariance( N, correction, x, stride )
: calculate the variance of a strided array ignoringNaN
values.nanvariancech( N, correction, x, stride )
: calculate the variance of a strided array ignoringNaN
values and using a one-pass trial mean algorithm.nanvariancepn( N, correction, x, stride )
: calculate the variance of a strided array ignoringNaN
values and using a two-pass algorithm.nanvariancetk( N, correction, x, stride )
: calculate the variance of a strided array ignoringNaN
values and using a one-pass textbook algorithm.nanvariancewd( N, correction, x, stride )
: calculate the variance of a strided array ignoringNaN
values and using Welford's algorithm.nanvarianceyc( N, correction, x, stride )
: calculate the variance of a strided array ignoringNaN
values and using a one-pass algorithm proposed by Youngs and Cramer.rangeBy( N, x, stride, clbk[, thisArg] )
: calculate the range of a strided array via a callback function.range( N, x, stride )
: calculate the range of a strided array.scumax( N, x, strideX, y, strideY )
: calculate the cumulative maximum of single-precision floating-point strided array elements.scumaxabs( N, x, strideX, y, strideY )
: calculate the cumulative maximum absolute value of single-precision floating-point strided array elements.scumin( N, x, strideX, y, strideY )
: calculate the cumulative minimum of single-precision floating-point strided array elements.scuminabs( N, x, strideX, y, strideY )
: calculate the cumulative minimum absolute value of single-precision floating-point strided array elements.sdsmean( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array using extended accumulation.sdsmeanors( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation with extended accumulation.sdsnanmean( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaN
values and using extended accumulation.sdsnanmeanors( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaN
values and using ordinary recursive summation with extended accumulation.smax( N, x, strideX )
: calculate the maximum value of a single-precision floating-point strided array.smaxabs( N, x, strideX )
: calculate the maximum absolute value of a single-precision floating-point strided array.smaxabssorted( N, x, strideX )
: calculate the maximum absolute value of a sorted single-precision floating-point strided array.smaxsorted( N, x, stride )
: calculate the maximum value of a sorted single-precision floating-point strided array.smean( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array.smeankbn( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array using an improved Kahan–Babuška algorithm.smeankbn2( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array using a second-order iterative Kahan–Babuška algorithm.smeanli( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array using a one-pass trial mean algorithm.smeanlipw( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation.smeanors( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation.smeanpn( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm.smeanpw( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array using pairwise summation.smeanwd( N, x, strideX )
: calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm.smediansorted( N, x, strideX )
: calculate the median value of a sorted single-precision floating-point strided array.smidrange( N, x, strideX )
: calculate the mid-range of a single-precision floating-point strided array.smin( N, x, strideX )
: calculate the minimum value of a single-precision floating-point strided array.sminabs( N, x, strideX )
: calculate the minimum absolute value of a single-precision floating-point strided array.sminsorted( N, x, strideX )
: calculate the minimum value of a sorted single-precision floating-point strided array.smskmax( N, x, strideX, mask, strideMask )
: calculate the maximum value of a single-precision floating-point strided array according to a mask.smskmin( N, x, strideX, mask, strideMask )
: calculate the minimum value of a single-precision floating-point strided array according to a mask.smskrange( N, x, strideX, mask, strideMask )
: calculate the range of a single-precision floating-point strided array according to a mask.snanmax( N, x, strideX )
: calculate the maximum value of a single-precision floating-point strided array, ignoringNaN
values.snanmaxabs( N, x, strideX )
: calculate the maximum absolute value of a single-precision floating-point strided array, ignoringNaN
values.snanmean( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaN
values.snanmeanors( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaN
values and using ordinary recursive summation.snanmeanpn( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaN
values and using a two-pass error correction algorithm.snanmeanwd( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaN
values and using Welford's algorithm.snanmin( N, x, strideX )
: calculate the minimum value of a single-precision floating-point strided array, ignoringNaN
values.snanminabs( N, x, strideX )
: calculate the minimum absolute value of a single-precision floating-point strided array, ignoringNaN
values.snanmskmax( N, x, strideX, mask, strideMask )
: calculate the maximum value of a single-precision floating-point strided array according to a mask, ignoringNaN
values.snanmskmin( N, x, strideX, mask, strideMask )
: calculate the minimum value of a single-precision floating-point strided array according to a mask, ignoringNaN
values.snanmskrange( N, x, strideX, mask, strideMask )
: calculate the range of a single-precision floating-point strided array according to a mask, ignoringNaN
values.snanrange( N, x, strideX )
: calculate the range of a single-precision floating-point strided array, ignoringNaN
values.snanstdev( N, correction, x, stride )
: calculate the standard deviation of a single-precision floating-point strided array ignoringNaN
values.snanstdevch( N, correction, x, stride )
: calculate the standard deviation of a single-precision floating-point strided array ignoringNaN
values and using a one-pass trial mean algorithm.snanstdevpn( N, correction, x, stride )
: calculate the standard deviation of a single-precision floating-point strided array ignoringNaN
values and using a two-pass algorithm.snanstdevtk( N, correction, x, stride )
: calculate the standard deviation of a single-precision floating-point strided array ignoringNaN
values and using a one-pass textbook algorithm.snanstdevwd( N, correction, x, stride )
: calculate the standard deviation of a single-precision floating-point strided array ignoringNaN
values and using Welford's algorithm.snanstdevyc( N, correction, x, stride )
: calculate the standard deviation of a single-precision floating-point strided array ignoringNaN
values and using a one-pass algorithm proposed by Youngs and Cramer.snanvariance( N, correction, x, stride )
: calculate the variance of a single-precision floating-point strided array ignoringNaN
values.snanvariancech( N, correction, x, stride )
: calculate the variance of a single-precision floating-point strided array ignoringNaN
values and using a one-pass trial mean algorithm.snanvariancepn( N, correction, x, stride )
: calculate the variance of a single-precision floating-point strided array ignoringNaN
values and using a two-pass algorithm.snanvariancetk( N, correction, x, stride )
: calculate the variance of a single-precision floating-point strided array ignoringNaN
values and using a one-pass textbook algorithm.snanvariancewd( N, correction, x, stride )
: calculate the variance of a single-precision floating-point strided array ignoringNaN
values and using Welford's algorithm.snanvarianceyc( N, correction, x, stride )
: calculate the variance of a single-precision floating-point strided array ignoringNaN
values and using a one-pass algorithm proposed by Youngs and Cramer.srange( N, x, strideX )
: calculate the range of a single-precision floating-point strided array.sstdev( N, correction, x, stride )
: calculate the standard deviation of a single-precision floating-point strided array.sstdevch( N, correction, x, strideX )
: calculate the standard deviation of a single-precision floating-point strided array using a one-pass trial mean algorithm.sstdevpn( N, correction, x, stride )
: calculate the standard deviation of a single-precision floating-point strided array using a two-pass algorithm.sstdevtk( N, correction, x, strideX )
: calculate the standard deviation of a single-precision floating-point strided array using a one-pass textbook algorithm.sstdevwd( N, correction, x, stride )
: calculate the standard deviation of a single-precision floating-point strided array using Welford's algorithm.sstdevyc( N, correction, x, stride )
: calculate the standard deviation of a single-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.stdev( N, correction, x, stride )
: calculate the standard deviation of a strided array.stdevch( N, correction, x, stride )
: calculate the standard deviation of a strided array using a one-pass trial mean algorithm.stdevpn( N, correction, x, stride )
: calculate the standard deviation of a strided array using a two-pass algorithm.stdevtk( N, correction, x, stride )
: calculate the standard deviation of a strided array using a one-pass textbook algorithm.stdevwd( N, correction, x, stride )
: calculate the standard deviation of a strided array using Welford's algorithm.stdevyc( N, correction, x, stride )
: calculate the standard deviation of a strided array using a one-pass algorithm proposed by Youngs and Cramer.svariance( N, correction, x, stride )
: calculate the variance of a single-precision floating-point strided array.svariancech( N, correction, x, strideX )
: calculate the variance of a single-precision floating-point strided array using a one-pass trial mean algorithm.svariancepn( N, correction, x, stride )
: calculate the variance of a single-precision floating-point strided array using a two-pass algorithm.svariancetk( N, correction, x, strideX )
: calculate the variance of a single-precision floating-point strided array using a one-pass textbook algorithm.svariancewd( N, correction, x, stride )
: calculate the variance of a single-precision floating-point strided array using Welford's algorithm.svarianceyc( N, correction, x, stride )
: calculate the variance of a single-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.variance( N, correction, x, stride )
: calculate the variance of a strided array.variancech( N, correction, x, stride )
: calculate the variance of a strided array using a one-pass trial mean algorithm.variancepn( N, correction, x, stride )
: calculate the variance of a strided array using a two-pass algorithm.variancetk( N, correction, x, stride )
: calculate the variance of a strided array using a one-pass textbook algorithm.variancewd( N, correction, x, stride )
: calculate the variance of a strided array using Welford's algorithm.varianceyc( N, correction, x, stride )
: calculate the variance of a strided array using a one-pass algorithm proposed by Youngs and Cramer.
var objectKeys = require( '@stdlib/utils-keys' );
var ns = require( '@stdlib/stats-base' );
console.log( objectKeys( ns ) );
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Copyright © 2016-2025. The Stdlib Authors.