-
Notifications
You must be signed in to change notification settings - Fork 90
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
#16013: sweeps created, awaiting ability to run them on corp
- Loading branch information
Showing
7 changed files
with
545 additions
and
11 deletions.
There are no files selected for viewing
97 changes: 97 additions & 0 deletions
97
tests/sweep_framework/sweeps/data_movement/concat/concat_BH.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,97 @@ | ||
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc. | ||
|
||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
from typing import Optional, Tuple | ||
|
||
import torch | ||
import random | ||
import ttnn | ||
|
||
from tests.ttnn.utils_for_testing import ( | ||
check_with_pcc, | ||
start_measuring_time, | ||
stop_measuring_time, | ||
get_per_core_size_and_num_cores, | ||
) | ||
from models.utility_functions import torch_random | ||
import pytest | ||
|
||
# Override the default timeout in seconds for hang detection. | ||
TIMEOUT = 20 | ||
random.seed(0) | ||
|
||
# List[Tensor] tensors = [<[1, 100, 14, 14]>, <[1, 100, 14, 14]>], | ||
# int dim = 1 | ||
# List[Tensor] tensors = [<[1, 1056, 7, 7]>, <[1, 48, 7, 7]>], | ||
# int dim = 1 | ||
|
||
parameters = { | ||
"nightly": { | ||
"concat_specs": [ | ||
{"dim": 3, "shapes": [[1, 1, 32, 32064], [1, 1, 32, 32064], [1, 1, 32, 32064], [1, 1, 32, 32064]]} | ||
], | ||
"dtype": [ttnn.bfloat8_b], | ||
"layout": [ttnn.TILE_LAYOUT], | ||
} | ||
} | ||
|
||
|
||
# Invalidate vector is called during the generation phase where each vector will be passed in. | ||
# If invalidated, the vector will still be stored but will be skipped. | ||
# Returns False, None if the vector is valid, and True, str with a reason for invalidation if it is invalid. | ||
def invalidate_vector(test_vector) -> Tuple[bool, Optional[str]]: | ||
if test_vector["layout"] == ttnn.ROW_MAJOR_LAYOUT: | ||
if test_vector["dtype"] == ttnn.bfloat8_b: | ||
return True, "bfloat8_b not supported with ROW_MAJOR_LAYOUT" | ||
|
||
return False, None | ||
|
||
|
||
def run( | ||
concat_specs, | ||
dtype, | ||
layout, | ||
*, | ||
device, | ||
) -> list: | ||
device.enable_async(False) | ||
torch_input_tensors = [torch_random(shape, -0.1, 0.1, dtype=torch.bfloat16) for shape in concat_specs["shapes"]] | ||
torch_output_tensor = torch.concat(torch_input_tensors, dim=concat_specs["dim"]) | ||
|
||
ttnn_input_tensors = [ | ||
ttnn.from_torch(torch_input_tensor, device=device, layout=layout, dtype=dtype) | ||
for torch_input_tensor in torch_input_tensors | ||
] | ||
start_time = start_measuring_time() | ||
result_tensor = ttnn.concat(ttnn_input_tensors, dim=concat_specs["dim"]) | ||
e2e_perf = stop_measuring_time(start_time) | ||
output_tensor = ttnn.to_torch(result_tensor) | ||
|
||
return [check_with_pcc(torch_output_tensor, output_tensor, 0.999), e2e_perf] | ||
|
||
|
||
@pytest.mark.parametrize("concat_spec", parameters["nightly"]["concat_specs"]) | ||
@pytest.mark.parametrize("dtype", parameters["nightly"]["dtype"]) | ||
@pytest.mark.parametrize("layout", parameters["nightly"]["layout"]) | ||
def test_concat_pytorch2(concat_spec, dtype, layout, device): | ||
shapes = concat_spec["shapes"] | ||
dim = concat_spec["dim"] | ||
device.enable_async(False) | ||
if dtype == ttnn.bfloat16 and any([shape[-1] % 2 != 0 for shape in shapes]) and layout == ttnn.ROW_MAJOR_LAYOUT: | ||
pytest.skip("Skipping test for RM bfloat16 with odd last dimension") | ||
|
||
torch_input_tensors = [torch_random(shape, -0.1, 0.1, dtype=torch.bfloat16) for shape in shapes] | ||
torch_output_tensor = torch.cat(torch_input_tensors, dim=dim) | ||
|
||
ttnn_input_tensors = [ | ||
ttnn.from_torch(torch_input_tensor, device=device, layout=layout, dtype=dtype) | ||
for torch_input_tensor in torch_input_tensors | ||
] | ||
|
||
result_tensor = ttnn.concat(ttnn_input_tensors, dim=dim) | ||
output_tensor = ttnn.to_torch(result_tensor) | ||
|
||
assert check_with_pcc( | ||
torch_output_tensor, output_tensor, 0.999 | ||
), "Output tensors do not match within the specified precision" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
132 changes: 132 additions & 0 deletions
132
.../sweep_framework/sweeps/data_movement/interleaved_to_sharded/interleaved_to_sharded_BH.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,132 @@ | ||
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc. | ||
|
||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
from typing import Optional, Tuple | ||
|
||
import torch | ||
import random | ||
import ttnn | ||
import traceback | ||
|
||
from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time | ||
from models.utility_functions import torch_random | ||
|
||
TIMEOUT = 15 | ||
# seed for random | ||
random.seed(0) | ||
|
||
parameters = { | ||
"nightly": { | ||
"shard_specs": [ | ||
{ | ||
"shape": [1, 32, 128], | ||
"shard_shape": [32, 128], | ||
"output_mem_config": { | ||
"layout": "TensorMemoryLayout::HEIGHT_SHARDED", | ||
"buffer_type": "BufferType::L1", | ||
"shard_spec": { | ||
"grid": [[{"x": 0, "y": 0}, {"x": 0, "y": 0}]], | ||
"shape": [32, 128], | ||
"orientation": "ShardOrientation::ROW_MAJOR", | ||
"halo": 0, | ||
"mode": "ShardMode::PHYSICAL", | ||
"physical_shard_shape": None, | ||
}, | ||
}, | ||
}, | ||
], | ||
"strategy": [ttnn.ShardStrategy.HEIGHT], | ||
"orientation": [ttnn.ShardOrientation.ROW_MAJOR], | ||
"core_grid": [ttnn.CoreGrid(y=1, x=1)], | ||
"dtype": [ttnn.bfloat16], | ||
"layout": [ttnn.ROW_MAJOR_LAYOUT], | ||
"input_buffer_type": [ttnn.L1_MEMORY_CONFIG], | ||
"output_buffer_type": [ttnn.L1_MEMORY_CONFIG], | ||
} | ||
} | ||
|
||
|
||
# Invalidate vector is called during the generation phase where each vector will be passed in. | ||
# If invalidated, the vector will still be stored but will be skipped. | ||
# Returns False, None if the vector is valid, and True, str with a reason for invalidation if it is invalid. | ||
def invalidate_vector(test_vector) -> Tuple[bool, Optional[str]]: | ||
if test_vector["layout"] == ttnn.ROW_MAJOR_LAYOUT: | ||
if test_vector["dtype"] == ttnn.bfloat8_b: | ||
return True, "bfloat8_b not supported with ROW_MAJOR_LAYOUT" | ||
|
||
return False, None | ||
|
||
|
||
def run( | ||
shard_specs, | ||
strategy, | ||
orientation, | ||
core_grid, | ||
dtype, | ||
layout, | ||
input_buffer_type, | ||
output_buffer_type, | ||
*, | ||
device, | ||
): | ||
device.enable_async(False) | ||
|
||
shape = shard_specs["shape"] | ||
shard_shape = shard_specs["shard_shape"] | ||
output_mem_config = shard_specs["output_mem_config"] | ||
|
||
# Parse memory configuration parameters | ||
mem_layout = output_mem_config["layout"] | ||
buffer_type = output_mem_config["buffer_type"] | ||
shard_spec = output_mem_config["shard_spec"] | ||
shard_grid = shard_spec["grid"] | ||
shard_shape = shard_spec["shape"] | ||
shard_orientation = shard_spec["orientation"] | ||
|
||
# Create the memory config using pybind-defined function | ||
shard_config = ttnn.create_sharded_memory_config( | ||
shape=shard_shape, | ||
core_grid=core_grid, | ||
strategy=strategy, | ||
orientation=orientation, | ||
use_height_and_width_as_shard_shape=True, | ||
) | ||
|
||
# Create a random tensor of the specified shape | ||
torch.manual_seed(0) | ||
input_data = torch.randn(shape, dtype=torch.bfloat16) | ||
interleaved_data = ttnn.from_torch( | ||
input_data, | ||
device=device, | ||
layout=layout, | ||
memory_config=input_buffer_type, | ||
dtype=ttnn.bfloat16, | ||
) | ||
|
||
# Measure performance of the interleaved-to-sharded operation | ||
start_time = start_measuring_time() | ||
|
||
# Use the pybind-defined function to convert interleaved to sharded | ||
sharded_data = ttnn.operations.data_movement.interleaved_to_sharded( | ||
input_tensor=interleaved_data, | ||
grid=ttnn.CoreGrid(*shard_grid[0][0].values()), | ||
shard_shape=shard_shape, | ||
shard_scheme=mem_layout, | ||
shard_orientation=shard_orientation, | ||
output_dtype=dtype, | ||
queue_id=0, | ||
keep_l1_aligned=False, | ||
) | ||
|
||
# Convert back to interleaved for validation | ||
interleaved_output = ttnn.to_memory_config(sharded_data, output_buffer_type) | ||
|
||
e2e_perf = stop_measuring_time(start_time) | ||
|
||
output_data = ttnn.from_device(interleaved_output) | ||
output_data = ttnn.to_torch(output_data) | ||
|
||
# Compare the concatenated tensors and return performance and accuracy check | ||
result = check_with_pcc(input_data, output_data, 0.999) | ||
return [result, e2e_perf] |
98 changes: 98 additions & 0 deletions
98
tests/sweep_framework/sweeps/data_movement/sharded_to_interleaved/one_test.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,98 @@ | ||
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc. | ||
|
||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
from typing import Optional, Tuple | ||
|
||
import torch | ||
import random | ||
import ttnn | ||
import traceback | ||
|
||
from framework.device_fixtures import default_device | ||
from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time | ||
from models.utility_functions import torch_random | ||
|
||
TIMEOUT = 15 | ||
# seed for random | ||
random.seed(0) | ||
|
||
parameters = { | ||
"nightly": { | ||
"shard_specs": [ | ||
{ | ||
"shape": [1, 32, 1280], | ||
"output_mem_config": { | ||
"layout": "TensorMemoryLayout::INTERLEAVED", | ||
"buffer_type": "BufferType::L1", | ||
"shard_spec": None, | ||
}, | ||
"output_dtype": "DataType::BFLOAT16", | ||
}, | ||
], | ||
"dtype": [ttnn.bfloat16], | ||
"layout": [ttnn.TILE_LAYOUT], | ||
} | ||
} | ||
|
||
|
||
shard_specs = { | ||
"shape": [1, 32, 1280], | ||
"output_mem_config": { | ||
"layout": "TensorMemoryLayout::INTERLEAVED", | ||
"buffer_type": "BufferType::L1", | ||
"shard_spec": None, | ||
}, | ||
"output_dtype": "DataType::BFLOAT16", | ||
} | ||
|
||
device = default_device() | ||
device.enable_async(False) | ||
|
||
shape = shard_specs["shape"] | ||
output_mem_config = shard_specs["output_mem_config"] | ||
|
||
# Parse memory configuration parameters | ||
mem_layout = output_mem_config["layout"] | ||
buffer_type = output_mem_config["buffer_type"] | ||
shard_spec = output_mem_config["shard_spec"] | ||
output_dtype = ttnn.bfloat16 | ||
|
||
# Create the memory config | ||
memory_config = ttnn.create_interleaved_memory_config( | ||
layout=mem_layout, | ||
buffer_type=buffer_type, | ||
shard_spec=shard_spec, | ||
) | ||
|
||
# Create a random tensor of the specified shape | ||
torch.manual_seed(0) | ||
input_data = torch.randn(shape, dtype=torch.bfloat16) | ||
sharded_data = ttnn.from_torch( | ||
input_data, | ||
device=device, | ||
layout=ttnn.TILE_LAYOUT, | ||
memory_config=ttnn.L1_MEMORY_CONFIG, | ||
dtype=ttnn.bfloat16, | ||
) | ||
|
||
# Measure performance of the sharded-to-interleaved operation | ||
start_time = start_measuring_time() | ||
|
||
# Use the pybind-defined function to convert sharded to interleaved | ||
interleaved_data = ttnn.operations.data_movement.sharded_to_interleaved( | ||
input_tensor=sharded_data, | ||
memory_config=memory_config, | ||
output_dtype=output_dtype, | ||
queue_id=0, | ||
is_l1_aligned=False, | ||
) | ||
|
||
e2e_perf = stop_measuring_time(start_time) | ||
|
||
output_data = ttnn.from_device(interleaved_data) | ||
output_data = ttnn.to_torch(output_data) | ||
|
||
# Compare the tensors and return performance and accuracy check | ||
result = check_with_pcc(input_data, output_data, 0.999) | ||
print([result, e2e_perf]) |
Oops, something went wrong.