Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implemented Glue ETL spreadsheet Google LIMS processing #19

Merged
merged 1 commit into from
Jan 11, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
48 changes: 48 additions & 0 deletions infra/glue/deploy/orcavault_tsa.tf
Original file line number Diff line number Diff line change
Expand Up @@ -84,3 +84,51 @@ resource "aws_glue_trigger" "spreadsheet_library_tracking_metadata" {

depends_on = [aws_glue_job.spreadsheet_library_tracking_metadata]
}

# ---

resource "aws_s3_object" "spreadsheet_google_lims" {
bucket = data.aws_s3_bucket.glue_script_bucket.bucket
key = "glue/spreadsheet_google_lims/spreadsheet_google_lims.py"
source = "../workspace/spreadsheet_google_lims/spreadsheet_google_lims.py"
etag = filemd5("../workspace/spreadsheet_google_lims/spreadsheet_google_lims.py")
}

resource "aws_glue_job" "spreadsheet_google_lims" {
name = "${local.stack_name}-spreadsheet-google-lims-job"
role_arn = aws_iam_role.glue_role.arn
glue_version = "5.0"
worker_type = "Standard"
number_of_workers = 1
timeout = 15

connections = sort([
aws_glue_connection.orcavault_tsa.name
])

command {
name = "glueetl"
script_location = "s3://${data.aws_s3_bucket.glue_script_bucket.bucket}/${aws_s3_object.spreadsheet_google_lims.key}"
python_version = "3"
}

default_arguments = {
"--job-language" = "python"
"--python-modules-installer-option" = "-r"
"--additional-python-modules" = "s3://${data.aws_s3_bucket.glue_script_bucket.bucket}/${aws_s3_object.requirements_txt.key}"
}
}

resource "aws_glue_trigger" "spreadsheet_google_lims" {
name = "${aws_glue_job.spreadsheet_google_lims.name}-scheduled-trigger"
type = "SCHEDULED"
schedule = "cron(10 13 * * ? *)" # Cron expression to run daily at 13:10 PM UTC = AEST/AEDT 00:10 AM
description = "Daily trigger for ${aws_glue_job.spreadsheet_google_lims.name}"
start_on_creation = true

actions {
job_name = aws_glue_job.spreadsheet_google_lims.name
}

depends_on = [aws_glue_job.spreadsheet_google_lims]
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,269 @@
import json
import os
import sys

import polars as pl
import requests
from awsglue.context import GlueContext
from awsglue.job import Job
from awsglue.utils import getResolvedOptions
from google.auth.transport.requests import Request
from google.oauth2.service_account import Credentials
from libumccr.aws import libssm, libsm, libs3
from pyspark.sql import SparkSession

# The datasource spreadsheet configuration
GDRIVE_SERVICE_ACCOUNT = "/umccr/google/drive/lims_service_account_json"
LIMS_SHEET_ID = "/umccr/google/drive/lims_sheet_id"
SCOPES = ["https://www.googleapis.com/auth/drive.readonly"]
SHEET_NAME = "Sheet1"

# NOTE: this is intended db table naming convention
# i.e. <datasource>_<suffix_meaningful_naming_convention>
# e.g. <spreadsheet>_<some_research_data_collection>
BASE_NAME = "spreadsheet_google_lims"
SCHEMA_NAME = "tsa"
DB_NAME = "orcavault"

# Prepare out path with naming convention
OUT_NAME_DOT = f"{DB_NAME}.{SCHEMA_NAME}.{BASE_NAME}"
OUT_NAME = f"{DB_NAME}_{SCHEMA_NAME}_{BASE_NAME}"
OUT_PATH = f"/tmp/{OUT_NAME}"

S3_BUCKET = "orcahouse-staging-data-472057503814"
S3_MID_PATH = f"glue/{BASE_NAME}"

REGION_NAME = "ap-southeast-2"


def extract():
spreadsheet_id = libssm.get_secret(LIMS_SHEET_ID)
account_info = libssm.get_secret(GDRIVE_SERVICE_ACCOUNT)
credentials: Credentials = Credentials.from_service_account_info(json.loads(account_info), scopes=SCOPES)
credentials.refresh(Request())

export_url = f"https://www.googleapis.com/drive/v3/files/{spreadsheet_id}/export?mimeType=application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"

headers = {
'Authorization': f'Bearer {credentials.token}',
}

response = requests.get(export_url, headers=headers)
if response.status_code == 200:
with open(f"{OUT_PATH}.xlsx", 'wb') as file:
file.write(response.content)
else:
raise Exception(f"Failed to download spreadsheet: {response.status_code} - {response.text}")


def transform():
# treat all columns as string value, do not automatically infer the dataframe dtype i.e. infer_schema_length=0
# https://github.com/pola-rs/polars/pull/16840
# https://stackoverflow.com/questions/77318631/how-to-read-all-columns-as-strings-in-polars
df = pl.read_excel(f"{OUT_PATH}.xlsx", sheet_name=SHEET_NAME, infer_schema_length=0)

# replace all cells that contain well-known placeholder characters, typically derived formula columns
df = df.with_columns(pl.col(pl.String).str.replace("^_$", ""))
df = df.with_columns(pl.col(pl.String).str.replace("^__$$", ""))
df = df.with_columns(pl.col(pl.String).str.replace("^-$", ""))
df = df.with_columns(
pl.when(pl.col(pl.String).str.len_chars() == 0)
.then(None)
.otherwise(pl.col(pl.String))
.name.keep()
)

# strip whitespaces, carriage return
df = df.with_columns(pl.col(pl.String).str.strip_chars())

# drop row iff all values are null
# https://docs.pola.rs/api/python/stable/reference/dataframe/api/polars.DataFrame.drop_nulls.html
df = df.filter(~pl.all_horizontal(pl.all().is_null()))

# sort the columns
# df = df.select(sorted(df.columns))

# drop all unnamed (blank) columns
for col in df.columns:
if col.startswith('__UNNAMED__'):
df = df.drop(col)

# add sheet name as a column
df = df.with_columns(pl.lit(SHEET_NAME).alias('sheet_name'))

# final column rename
df = df.rename({
'IlluminaID': 'illumina_id',
'Run': 'run',
'Timestamp': 'timestamp',
'SubjectID': 'subject_id',
'SampleID': 'sample_id',
'LibraryID': 'library_id',
'ExternalSubjectID': 'external_subject_id',
'ExternalSampleID': 'external_sample_id',
'ExternalLibraryID': 'external_library_id',
'SampleName': 'sample_name',
'ProjectOwner': 'project_owner',
'ProjectName': 'project_name',
'ProjectCustodian': 'project_custodian',
'Type': 'type',
'Assay': 'assay',
'OverrideCycles': 'override_cycles',
'Phenotype': 'phenotype',
'Source': 'source',
'Quality': 'quality',
'Topup': 'topup',
'SecondaryAnalysis': 'secondary_analysis',
'Workflow': 'workflow',
'Tags': 'tags',
'FASTQ': 'fastq',
'NumberFASTQS': 'number_fastqs',
'Results': 'results',
'Trello': 'trello',
'Notes': 'notes',
'Todo': 'todo'
})

df.write_csv(f"{OUT_PATH}.csv")

# generate sql schema script
sql = ""
i = 1
for col in df.columns:
if col in ['record_source', 'load_datetime']:
continue
if i == len(df.columns):
sql += f'{col}\tvarchar'
else:
sql += f'{col}\tvarchar,\n'
i += 1

sql_schema = f"""CREATE TABLE IF NOT EXISTS {OUT_NAME_DOT}
(
{sql}
);"""

with open(f"{OUT_PATH}.sql", 'w', newline='') as f:
f.write(sql_schema)

print(sql_schema)


def load(spark: SparkSession):
# load staging data from the temporary location by naming convention
csv_file, sql_file, xls_file = f"{OUT_PATH}.csv", f"{OUT_PATH}.sql", f"{OUT_PATH}.xlsx"

# construct s3 object name

csv_s3_object_name = f"{S3_MID_PATH}/{os.path.basename(csv_file)}"
sql_s3_object_name = f"{S3_MID_PATH}/{os.path.basename(sql_file)}"
xls_s3_object_name = f"{S3_MID_PATH}/{os.path.basename(xls_file)}"

# load data into S3

s3_client = libs3.s3_client()

s3_client.upload_file(csv_file, S3_BUCKET, csv_s3_object_name)
s3_client.upload_file(sql_file, S3_BUCKET, sql_s3_object_name)
s3_client.upload_file(xls_file, S3_BUCKET, xls_s3_object_name)

# load data into database

def load_db():
tsa_username = libssm.get_ssm_param("/orcahouse/orcavault/tsa_username")
secret_value = libsm.get_secret(f"orcahouse/orcavault/{tsa_username}")
secret = json.loads(secret_value)

db_user = secret['username']
db_password = secret['password']
db_host = secret['host']
db_port = secret['port']
db_name = secret['dbname']
assert db_name == DB_NAME, 'db_name mismatch'

jdbc_url = f"jdbc:postgresql://{db_host}:{db_port}/{db_name}"
table_name = f"{SCHEMA_NAME}.{BASE_NAME}"
bucket_name = S3_BUCKET
csv_file_path = csv_s3_object_name

# truncate the table

df = spark.read \
.jdbc(url=jdbc_url, table=table_name, properties={"user": db_user, "password": db_password})

print(df.count())

df.write \
.option("truncate", True) \
.jdbc(url=jdbc_url, table=table_name, properties={"user": db_user, "password": db_password},
mode="overwrite")

print("Truncated")

# import csv from s3

import_sql = f"""
SELECT aws_s3.table_import_from_s3(
'{table_name}',
'',
'(FORMAT csv, HEADER true, DELIMITER ",")',
'{bucket_name}',
'{csv_file_path}',
'{REGION_NAME}'
)
"""
df_s3 = spark.read.format("jdbc") \
.option("url", jdbc_url) \
.option("user", db_user) \
.option("password", db_password) \
.option("query", import_sql) \
.load()

print(df_s3.count() == 1)

# after data loading complete

print(df.count())
print(df.printSchema())

load_db() # comment if local dev


def clean_up():
# os.remove(LOCAL_TEMP_FILE)
pass # for now


class GlueGoogleLIMS(Job):
def __init__(self, glue_context):
super().__init__(glue_context)
params = []
if '--JOB_NAME' in sys.argv:
params.append('JOB_NAME')
args = getResolvedOptions(sys.argv, params)

self.job = Job(glue_context)
self.spark: SparkSession = glue_context.spark_session

if 'JOB_NAME' in args:
job_name = args['JOB_NAME']
else:
job_name = "GlueGoogleLIMS"
self.job.init(job_name, args)

def run(self):

extract()

transform()

load(self.spark)

clean_up()

self.job.commit()


if __name__ == '__main__':
gc = GlueContext(SparkSession.builder.getOrCreate())
GlueGoogleLIMS(gc).run()
Loading