Skip to content

yanyuting123/Improving-Reliability-for-Federated-Learning-in-Mobile-Edge-Networks

 
 

Repository files navigation

Improving-Reliability-for-Federated-Learning-in-Mobile-Edge-Networks

Figure - main - zipf

  • our main graph: average error rate - number of devices

  • device error rate: zipf distribution with parameter 2, after getting the distribution, we divide it by 100

  • data size: zipf distribution with parameter 2

  • data ratio: 0.5

  • To be more specific:

    small,相对于greedy提升: 0.4924601179876383
    small,相对于SLSQP提升: 0.21309760822744192
    medium,相对于greedy提升: 0.3892033319239571
    medium,相对于SLSQP提升: 0.13570298910442993
    large,相对于greedy提升: 0.3000516497088584
    large,相对于SLSQP提升: 0.19056149281682314
    全局,相对于greedy最小提升0.15927065097312595
    全局,相对于greedy最大提升0.7265050439693782
    全局,相对于greedy平均提升0.38896538144376736
    全局,相对于SLSQP最小提升-0.2140927362917622
    全局,相对于SLSQP最大提升0.39576960107326214
    全局,相对于SLSQP平均提升0.1457862136147851

Figure - ratio - zipf

  • average error rate performance - data ratio

  • device error rate: zipf distribution with parameter 2, after getting the distribution, we divide it by 100

  • data size: zipf distribution with parameter 2

  • online device numbers: 25

  • To be more specific:

    small,相对于greedy提升: 0.4235255656854579
    small,相对于SLSQP提升: 0.2561197749894512
    medium,相对于greedy提升: 0.4540778865118285
    medium,相对于SLSQP提升: 0.1632340758167984
    large,相对于greedy提升: 0.28726265423512476
    large,相对于SLSQP提升: 0.15507535804171002
    全局,相对于greedy最小提升-0.009210402111178045
    全局,相对于greedy最大提升0.8099652865113203
    全局,相对于greedy平均提升0.37818609735323583
    全局,相对于SLSQP最小提升-0.18115725016794756
    全局,相对于SLSQP最大提升0.5033772946525363
    全局,相对于SLSQP平均提升0.14579754068502154

Figure - ratio - f

  • average error rate performance - data ratio

  • device error rate: F distribution with parameter (1,1), after getting the distribution, we divide it by 5

  • data size: F distribution with parameter (1,1)

  • online device numbers: 25

  • To be more specific:

    small,相对于greedy提升: 0.4557158206215211
    small,相对于SLSQP提升: 0.3042362559022756
    medium,相对于greedy提升: 0.3531324977932644
    medium,相对于SLSQP提升: 0.03842385915661154
    large,相对于greedy提升: 0.16787394885166534
    large,相对于SLSQP提升: 0.17094966576014922
    全局,相对于greedy最小提升-0.06737339897489557
    全局,相对于greedy最大提升0.7292001275903853
    全局,相对于greedy平均提升0.30980407506510177
    全局,相对于SLSQP最小提升-0.30664719957326914
    全局,相对于SLSQP最大提升2.0115336285056085
    全局,相对于SLSQP平均提升0.23965262866008455

Figure - ratio - uniform

  • average error rate performance - data ratio

  • device error rate: uniform distribution on [0,0.2]

  • data size: uniform distribution on [0,1]

  • online device numbers: 25

  • To be more specific:

    small,相对于greedy提升: 0.3995817834144879
    small,相对于SLSQP提升: 0.39861529241831656
    medium,相对于greedy提升: 0.09101018896032653
    medium,相对于SLSQP提升: 0.1889016229069118
    large,相对于greedy提升: -0.011293527240038539
    large,相对于SLSQP提升: 0.019619432205150507
    全局,相对于greedy最小提升: -0.04901354118315896
    全局,相对于greedy最大提升: 0.5304155300629732
    全局,相对于greedy平均提升: 0.14266018081642892
    全局,相对于SLSQP最小提升: -0.04957348124029826
    全局,相对于SLSQP最大提升: 0.9496724439966612
    全局,相对于SLSQP平均提升: 0.21186058079253586
    

Figure - bar - both distributions are various

  • best error rate performance upon different distributions

  • For uniform distribution, the device error ranges are:

    • [0,1] / 5
    • [1,2] / 5
    • [2,3] / 5

    and the data size ranges are:

    • [0,1]
    • [1,2]
    • [2,3]
  • For F distribution, the device error ranges are:

    • (1,1) / 5
    • (8,3) / 5
    • (20,20) / 5

    and the data size ranges are:

    • (1,1)
    • (8,3)
    • (20,20)
  • For zipf distribution, the device error ranges are:

    • 1.5 / 100
    • 2 / 100
    • 3 / 100

    and the data size ranges are:

    • 1.5
    • 2
    • 3
  • data ratio: 0.5

  • online device number: 25

  • To be more specific:

    uniform分布,small,相对于greedy提升: 0.43876329007451603
    uniform分布,small,相对于SLSQP提升: 0.4381275804290543
    uniform分布,medium,相对于greedy提升: 0.163567393118934
    uniform分布,medium,相对于SLSQP提升: 0.42395981459081417
    uniform分布,large,相对于greedy提升: 0.246786386060319
    uniform分布,large,相对于SLSQP提升: 0.11776952907384786
    f分布,small,相对于greedy提升: 0.31088498816749305
    f分布,small,相对于SLSQP提升: 0.5055932633845275
    f分布,medium,相对于greedy提升: 0.5621499089885922
    f分布,medium,相对于SLSQP提升: 0.6721712077881525
    f分布,large,相对于greedy提升: 0.7789260926492565
    f分布,large,相对于SLSQP提升: 0.8417459536941804
    zipf分布,small,相对于greedy提升: 0.9434280176926076
    zipf分布,small,相对于SLSQP提升: 0.8122455206093158
    zipf分布,medium,相对于greedy提升: 0.5263154798640055
    zipf分布,medium,相对于SLSQP提升: 0.5263154798640055
    zipf分布,large,相对于greedy提升: 0.4808435675699952
    zipf分布,large,相对于SLSQP提升: 0.5604893085341159

Figure - bar - only device error distributions are various

  • best error rate performance upon different distributions in device error rate but fix data distribution on (1,1) F distribution

  • the setting is the same as figure 5 except that data distribution is fixed

    uniform分布,small,相对于greedy提升: 0.5755465529129367
    uniform分布,small,相对于SLSQP提升: 0.7665102839860015
    uniform分布,medium,相对于greedy提升: 0.299096818222461
    uniform分布,medium,相对于SLSQP提升: 0.5320995997114417
    uniform分布,large,相对于greedy提升: 0.0976878089679025
    uniform分布,large,相对于SLSQP提升: 0.10301065472833051
    f分布,small,相对于greedy提升: 0.5229756838232974
    f分布,small,相对于SLSQP提升: 0.5229756838232974
    f分布,medium,相对于greedy提升: 0.3632245007158276
    f分布,medium,相对于SLSQP提升: 0.3632245007158276
    f分布,large,相对于greedy提升: 0.4135137935871781
    f分布,large,相对于SLSQP提升: 0.0
    zipf分布,small,相对于greedy提升: 0.9448415531793901
    zipf分布,small,相对于SLSQP提升: 0.9192489653806374
    zipf分布,medium,相对于greedy提升: 0.6923721474472584
    zipf分布,medium,相对于SLSQP提升: 0.6923721474472584
    zipf分布,large,相对于greedy提升: 0.5446353510058206
    zipf分布,large,相对于SLSQP提升: 0.0

Table

  • time used by each methods

  • the slowest one is SLSQP, the middle one is ranRFL, and the fastest one is GDS

  • through import raw data to csv in Excel, you can see it clearly

  • To be more specific: 这个表描述了算法运行时间随侯选设备数的变化关系,我们的算法在时间性能上优于SLSQP算法,劣于贪心算法,但随候选设备数增大,我们的算法运行时间仍在合理、可控的范围内

    raw data:

    [0.014059209823608398, 0.01719050407409668, 0.023437690734863282, 0.024990296363830565, 0.02811589241027832, 0.029690980911254883, 0.026556968688964844, 0.032808351516723636, 0.031247878074645997, 0.03905167579650879, 0.037485289573669436, 0.031241798400878908, 0.05000548362731934, 0.0390739917755127, 0.04999217987060547, 0.05156033039093018, 0.048441100120544436, 0.05156407356262207, 0.05000307559967041, 0.05468838214874268, 0.054689621925354, 0.05155661106109619, 0.05468108654022217, 0.05780477523803711, 0.0640561819076538, 0.05624854564666748, 0.06874308586120606, 0.07186903953552246, 0.08750009536743164, 0.06718704700469971, 0.07811534404754639, 0.0798715353012085, 0.09139437675476074, 0.11626694202423096, 0.08905549049377441, 0.12340848445892334, 0.13746826648712157, 0.12965703010559082][0.0, 0.0, 0.0, 0.0015620708465576172, 0.0, 0.0, 0.001558399200439453, 0.0, 0.0, 0.0, 0.0, 0.001562356948852539, 0.0015625476837158204, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001565861701965332, 0.0, 0.0, 0.0, 0.0015621423721313477, 0.0, 0.0015622377395629883, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001565241813659668, 0.0031272411346435548, 0.0, 0.0031244516372680663, 0.001562190055847168][0.017183780670166016, 0.024987053871154786, 0.03279924392700195, 0.034370827674865725, 0.0437424898147583, 0.05936057567596435, 0.04842586517333984, 0.08278958797454834, 0.06716670989990234, 0.11091492176055909, 0.09841911792755127, 0.14684040546417237, 0.1108975887298584, 0.16712429523468017, 0.1999505043029785, 0.19213566780090333, 0.19993822574615477, 0.18743271827697755, 0.2108734130859375, 0.2639873266220093, 0.3030438184738159, 0.23587255477905272, 0.26711876392364503, 0.2530567407608032, 0.2963627576828003, 0.3577136993408203, 0.29209945201873777, 0.4545668840408325, 0.38426618576049804, 0.443630313873291, 0.3967693328857422, 0.5453415155410767, 0.5831639528274536, 0.5726602792739868, 0.5186112403869629, 0.5045668363571167, 0.6061081647872925, 0.7763815879821777]

Conclusion

  • 做了这么多对比,我们的算法就一个字——好!
  • 在返回解的优越性方面,我们的算法可依赖性很高;在时间性能方面,我们的算法时间性能居中,在可以接受的范围内
  • 综合来看,还是一个字——好!

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%