Skip to content

Clearloveyuan/awesome-active-learning-New

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Awesome Active Learning Awesome

version Status-building PRs-Welcome stars FORK Issues

TODO: Modify Introduction

🤩 A curated list of awesome Active Learning ! 🤩

Background

(An illustrative example of pool-based active learning. image source: Settles, Burr)

What is Active Learning?

Active learning is a special case of machine learning in which a learning algorithm can interactively query a oracle (or some other information source) to label new data points with the desired outputs.

(The pool-based active learning cycle. image source: Settles, Burr)

There are situations in which unlabeled data is abundant but manual labeling is expensive. In such a scenario, learning algorithms can actively query the oracle for labels. This type of iterative supervised learning is called active learning. Since the learner chooses the examples, the number of examples to learn a concept can often be much lower than the number required in normal supervised learning. With this approach, there is a risk that the algorithm is overwhelmed by uninformative examples. Recent developments are dedicated to multi-label active learning, hybrid active learning and active learning in a single-pass (on-line) context, combining concepts from the field of machine learning (e.g. conflict and ignorance) with adaptive, incremental learning policies in the field of online machine learning.

(source: Wikipedia)

Contributing

If you find the awesome paper/code/book/tutorial or have some suggestions, please feel free to pull requests or contact [email protected] or [email protected] to add papers using the following Markdown format:

| Year | [Title](link) | Author | Publication | [Code](link) | Tags | Notes |

Tags

TODO: Use Our Tags

Sur.: survey | Cri.: critics | Pool.: pool-based sampling | Str.: stream-based sampling | Syn.: membership query synthesize | Semi.: semi-supervised learning | Self.: self-supervised learning | RL.: reinforcement learning | FS.: few-shot learning | Meta.: meta learning |

Thanks for your valuable contribution to the research community. 😃


Conferences

Conference 2019 and before 2020 2021 2022 2023 2024 2025
ACL 2019 2020 2021 2022 2023 2024 2025
CVPR 2019 2020 2021 2022 2023 2024 2025
NIPS 2019 2020 2021 2022 2023 2024 2025
ICML 2019 2020 2021 2022 2023 2024 2025
EMNLP 2019 2020 2021 2022 2023 2024 2025
ECCV 2019 2020 2021 2022 2023 2024 2025
ICCV 2019 2020 2021 2022 2023 2024 2025
AAAI 2019 2020 2021 2022 2023 2024 2025
IJCAI 2019 2020 2021 2022 2023 2024 2025
ICLR 2019 2020 2021 2022 2023 2024 2025
KDD 2019 2020 2021 2022 2023 2024 2025
ACMM 2019 2020 2021 2022 2023 2024 2025
ICASSP 2019 2020 2021 2022 2023 2024 2025
AISTATS 2019 2020 2021 2022 2023 2024 2025
SIGIR 2019 2020 2021 2022 2023 2024 2025
ICDM 2019 2020 2021 2022 2023 2024 2025
COLING 2019 2020 2021 2022 2023 2024 2025
COLT 2019 2020 2021 2022 2023 2024 2025
NAACL 2019 2020 2021 2022 2023 2024 2025
WACV 2019 2020 2021 2022 2023 2024 2025
NLPCC 2019 2020 2021 2022 2023 2024 2025
SIGMOD 2019 2020 2021 2022 2023 2024 2025
ICDE 2019 2020 2021 2022 2023 2024 2025
CIKM 2019 2020 2021 2022 2023 2024 2025

Journals

Journal 2019 and before 2020 2021 2022 2023 2024 2025
AIJ 2019 2020 2021 2022 2023 2024 2025
TPAMI 2019 2020 2021 2022 2023 2024 2025
JMLR 2019 2020 2021 2022 2023 2024 2025
CVIU 2019 2020 2021 2022 2023 2024 2025
DKE 2019 2020 2021 2022 2023 2024 2025
TASLP 2019 2020 2021 2022 2023 2024 2025
Pattern Recognition 2019 2020 2021 2022 2023 2024 2025
Neural Networks 2019 2020 2021 2022 2023 2024 2025
Neural Computation 2019 2020 2021 2022 2023 2024 2025
Machine Learning 2019 2020 2021 2022 2023 2024 2025
IEEE TNNLS 2019 2020 2021 2022 2023 2024 2025
IEEE Trans. Fuzzy Sys. 2019 2020 2021 2022 2023 2024 2025
IEEE CYB 2019 2020 2021 2022 2023 2024 2025
IEEE Trans. Affect 2019 2020 2021 2022 2023 2024 2025
IEEE TIP 2019 2020 2021 2022 2023 2024 2025

Tools

ActiveAnno: General-Purpose Document-Level Annotation Tool with Active Learning Integration ACTIVEANNO

Data Annotation Online Platform: SMART

ALToolbox: A Set of Tools for Active Learning Annotation ALToolbox

Preprint

arXiv

Disclaimer

TODO

Some results come from DBLP, ACL, NIPS, OpenReview, paperwithcode, if this violates your copyright, you can contact us at any time, we will delete it as soon as possible, thank you :-)

Contributers

GitHub Contributors Image

Acknowledgement

TODO